The aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred
pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were mointered in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation describes the flexural strength as a function of indirect (surface) pulse velocity. The application of these equations may be extended to cover the assessment of flexural strength of constructed concrete kerb units or in-situ concreting kerbstone and any other precast concrete units. Finally, a relation between direct and indirect pulse velocities of the a given concrete was predicted and suggested to be employed in case when one of the velocities is not
available can be measured for other ultrasonic pulse test applications
Frequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their
... Show MoreIn this work ,pure and doped(CdO)thin films with different concentration of V2O5x (0.0, 0.05, 0.1 ) wt.% have been prepared on glass substrate at room temperature using Pulse Laser Deposition technique(PLD).The focused Nd:YAG laser beam at 800 mJ with a frequency second radiation at 1064 nm (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface At first ,The pellets of (CdO)1-x(V2O5)x at different V2O5 contents were sintered to a temperature of 773K for one hours.Then films of (CdO)1-x(V2O5)x have been prepared.The structure of the thin films was examined by using (XRD) analysis..Hall effect has been measured in orded to know the type of conductivity, Finally the solar cell and the effici
... Show MoreTo achieve sustainability in the field of civil engineering, there has become a great interest in developing reactive powder concrete RPC through the use of environmentally friendly materials to reduce the release of CO2 gas produced from cement factories as well as contribute to the recycling of industrial wastes that have a great impact on environmental pollution.
In this study, reactive powder concrete was prepared using total binder content of 800 kg/m3, water to binder ratio (0.275), and micro steel fibers 1% by volume of concrete. The experimental program included replacing fly ash with (8, 12, 16) % by cement weight to find the optimal ratio, which achieved the best mechanical proper
... Show MoreImproving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.
This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv
... Show MoreConstruction joints are stopping places in the process of placing concrete, and they are required because in many structures it is impractical to place concrete in one continuous operation. The amount of concrete that can be placed at one time is governed by the batching and mixing capacity and by the strength of the formwork. A good construction joint should provide adequate flexural and shear continuity through the interface.
In this study, the effect of location of construction joints on the performance of reinforced concrete structural elements is experimentally investigated.
Nineteen beam specimens with dimensions of 200×200×950 mm were tested. The variables investigated are the location of the construction joints
... Show MoreThe performance and lifetime of the flexible asphalt pavement are mainly dependent on the interfacial bond strength between layer courses. To enhance the bond between layers, adhesive materials, such as tack coats, are used. The tack coat itself is a bituminous material, which is applied on an existing relatively non-absorbent surface to ensure a strong bond between the old and newly paved layer. The primary objective of this study was to evaluate the effects of various types of tack coat materials on interlayer bond strength and to determine the optimal application rate for each type. The tack coat types used in this paper were RC-70, RC-250, and CSS-1h. Both laboratory-prepared and field-constructed hot mix asphalt concrete pavements usin
... Show MoreRoller compacted concrete (RCC) is a material with no slumps and is made from the same raw materials as conventional concrete. The roller compacted dam method, the high paste technique, the corps of engineers method, and the maximum density method are all ways of designing RCC. The evolution of RCC has resulted in a substantial change in construction projects, most notably in dams, because of the sluggish pace of conventional placement, consolidation, and compacting. The construction process was accelerated by incorporating RCC into dams, resulting in a shorter construction period. Research shows that the dams that used RCC had completed one to two years sooner than the dams that used regular concrete (Bagheri an
... Show MoreSIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and
... Show More