Preferred Language
Articles
/
joe-2059
Investigation of Backfill Compaction Effect on Buried Concrete Pipes
...Show More Authors

The present study deals with the experimental investigation of buried concrete pipes. Concrete pipes are buried in loose and dense conditions of gravelly sand soil and subjected to different surface loadings to study the effects of the backfill compaction on the pipe. The experimental investigation was accomplished using full-scale precast unreinforced concrete pipes with 300 mm internal diameter tested in a laboratory soil box test facility set up for this study. Two loading platforms are used namely, uniform loading platform and patch loading platform. The wheel load was simulated through patch loading platform which have dimensions of 254 mm *508 mm, which is used by AASHTO to model the wheel load of a HS20 truck. The pipe-soil systems were loaded up to pipes collapse. Pipes were instrumented with strain gauges to measure circumferential strains, in addition to dial gauges, for measurements of the pipe vertical deflections and settlement of the loading platforms. The test results indicated that flexure governed the buried pipe behavior. Flexural cracks formed slightly before the ultimate load. A comparison of soil backfill, between a loose and dense compaction, showed that the dense backfill improve largely the pipe installation and the strength of
pipe-soil system

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Engineering
Numerical Investigation of the Flexure Behavior of Reinforced Concrete Spandrel Beams with Distributed Tension Reinforcement
...Show More Authors

When the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 11 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Estimation of Critical Buckling Velocities for Conservative Pipes Conveying Fluid
...Show More Authors

Conservative pipes conveying fluid such as pinned-pinned (p-p), clamped–pinned (c-p) pipes and clamped-clamped (c-c) lose their stability by buckling at certain critical fluid velocities. In order to experimentally evaluate these velocities, high flow-rate pumps that demand complicated fluid circuits must be used.

     This paper studies a new experimental approach based on estimating the critical velocities from the measurement of several fundamental natural frequencies .In this approach low flow-rate pumps and simple fluid circuit can be used.

Experiments were carried out on two pipe models at three different boundary conditions. The results showed that the present approach is more accurate for est

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
Effect of Alkali - Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete
...Show More Authors

As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via experimental study. The impact of essential variables like w

... Show More
View Publication
Scopus (19)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
Effect of Alkali - Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete
...Show More Authors
Abstract<p>As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via exp</p> ... Show More
View Publication
Crossref (19)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Effect of Nano Calcium Carbonate on Some Properties of Reactive Powder Concrete
...Show More Authors

View Publication
Scopus (12)
Crossref (10)
Scopus Crossref
Publication Date
Thu Dec 13 2018
Journal Name
International Journal Of Engineering &amp; Technology
Effect of Steel Fiber on Properties of High Performance No-Fine Concrete
...Show More Authors

No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Oct 12 2021
Journal Name
Engineering, Technology &amp; Applied Science Research
The Effect of Nanomaterials on the Properties of Limestone Dust Green Concrete
...Show More Authors

Portland cement is considered the most involved product in environmental pollution. It is responsible for about 10% of global CO2 emissions [1]. Limestone dust is a by-product of limestone plants and it is produced in thousands of tons annually as waste material. To fulfill sustainability requirements, concrete production is recommended to reduce Portland cement usage with the use of alternative or waste materials. The production of sustainable high strength concrete by using nanomaterials is one of the aims of this study. Limestone dust in 12, 16, and 20% by weight of cement replaced cement in this study. The study was divided into two parts: the first was devoted to the investigation of the best percentage of replacement of waste

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Fri Mar 07 2014
Journal Name
Annals Of Applied Biology
High throughput screening of rooting depth in rice using buried herbicide
...Show More Authors
Abstract<p>Root research requires high throughput phenotyping methods that provide meaningful information on root depth if the full potential of the genomic revolution is to be translated into strategies that maximise the capture of water deep in soils by crops. A very simple, low cost method of assessing root depth of seedlings using a layer of herbicide (<styled-content style="fixed-case">TRIK</styled-content> or diuron) buried 25 or 30 cm deep in soil‐filled boxes of varying size is described that is suitable for screening hundreds or thousands of rice accessions in controlled environment conditions. Variation in cultivar sensitivity to the herbicide when injected into pots was detected but con</p> ... Show More
View Publication
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Feb 24 2025
Journal Name
Advances In Structural Engineering
Experimental and numerical investigation on the behavior of composite reinforced concrete columns encased by steel section and hybrid GFRP section
...Show More Authors

GFRP was employed in constructions as an alternative to steel, which has many advantages like lightweight, large tensile strength and resist corrosion. Existing researches are insufficient in studying the influence of hybrid reinforced concrete composite columns encased by GFRP I-section (RCCCEG) and I-section steel (RCCCES). In this study twenty one (RC) specimens of a cross-section of 130 mm × 160 mm, with different length (long 1600 mm and short 750 mm) were encased by using I-section (steel and GFRP) and tested under various loading (concentric, eccentric and flexural loads). The test was focused on the influence of many parameters; load-carrying capacity, mode of failure, deformation and drawing an interaction diagram (N-

... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref