The study presents the test results of Completely Decomposed Granite (CDG) soil tested under drained triaxial compression, direct shear and simple shear tests. Special attention was focused on the modification of the upper halve of conventional Direct Shear Test (DST) to behave as free
head in movement along with vertical strain control during shear stage by using Geotechnical Digital System (GDS). The results show that Free Direct Shear Test (FDST) has clear effect on the measured shear stress and vertical strain during the test. It has been found that shear strength
parameters measured from FDST were closer to those measured from simple shear and drained triaxial compression test. This study also provides an independent check on the consistency of the data by providing an interpretation for angle of dilation together with shearing resistance by using flow rule analysis
Gypseous soil is prevalent in arid and semi-arid areas, is from collapsible soil, which contains the mineral gypsum, and has variable properties, including moisture-induced volume changes and solubility. Construction on these soils necessitates meticulous assessment and unique designs due to the possibility of foundation damage from soil collapse. The stability and durability of structures situated on gypseous soils necessitate close collaboration with specialists and careful, methodical preparation. It had not been done to find the pattern of failure in the micromechanical behavior of gypseous sandy soil through particle image velocity (PIV) analysis. This adopted recently in geotech
In this research, the geotechnical properties of the soil profile in Hilla city within Babylon Governorate in the middle parts of Iraq are described. The geotechnical data at the specific sites were collected from some geotechnical investigation reports performed at some selected locations. This article is devoted to studying the distribution of soil properties (the physical and mechanical) in the horizontal and vertical directions. Moreover, a correlation between different physical and mechanical properties is performed. The correlation is executed using statistical analysis by Microsoft Excel Software (2016). From the regression results, it was found that the nature of the soil is c
This paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re
... Show MoreIraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve
... Show MoreThe aim of this study is modeling the transport of industrial wastewater in sandy soil by using finite element method. A washing technique was used to remove the industrial wastewater from the soil. The washing technique applied with an efficient hydraulic gradient to help in transport of contaminant mass by advection. Also, the mass transport equation used in modeling the transport of industrial wastewater from soil includes the sorption and chemical reactions. The sandy soil samples obtained from Al-Najaf Governorate/Iraq. The wastewater contaminant was obtained from Al- Musyiebelectricity power plant. The soil samples were synthetically contaminated with four percentages of 10, 20, 30 and 40% of the contaminant and these percentages calc
... Show MoreRecently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 3
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show More