Preferred Language
Articles
/
joe-2040
Numerical Simulation of 3D- Flow Structure and Heat Transfer for Longitudinal Riblet Upstream of Leading Edge Endwall Junction of Nozzle Guide Vane
...Show More Authors

The simulation have been made for  3D flow structure and heat  transfer with and without

longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 models of V-groove riblet with wide ranges of height (h) and space (s). The results indicated that, the riblet endwall junction was a powerful tool for controlling the flow structure, reducing secondary flow formation,and elimination the effect of heat transfer at leading edg and passage . The drag reduction produced by riblet was proportional with their height and space. V-groove riblet with dimension of (h=1.35mm and s=2.26mm) was found to be the most effective in reduction of drag (2.7%) and heat transfer (21%) so it was selected as an optimum dimension of riblet model. The results also showed that the drag reduction produced by riblet was proportional to their size. The riblet model had a great effect in elimination spanwise ,pitchwise velocities ,but strength the streamwise velocity .At leading edge ,the effect of secondary flow was extended up to 23% from span height and 35% upstream leading edge .The riblet model caused an increase in momentom at a region very close to leading edge and to move stagnation point very close to the leading edge.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 02 2023
Journal Name
Al-khwarizmi Engineering Journal (alkej)
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Abstract

In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.

Key

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Experimental Study on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling in a Microchannel
...Show More Authors

The current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Mechanical Engineering Research And Developments
Numerical Investigation of Natural Convection Heat Transfer in Partially Filled Porous Enclosure Subjected to Constant Heat
...Show More Authors

Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti

... Show More
Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Effect of Air Bubbles on Heat Transfer Coefficient in Turbulent Convection Flow
...Show More Authors

Experimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Heat Transfer Characteristics of a Fluid Flow in Multi Tube Heat Exchanger Fitted with Perforated Fins
...Show More Authors

The heat transfer and flow resistance characteristics for air flow cross over circular finned tube heat exchanger has been studied numerically and experimentally. The purpose of the study was to improve the heat transfer characteristics of an annular finned-tube heat exchanger for better performance. The study has concentrated on the effect of the number of perforations and perforations shapes on the heat transfer and pressure drop across a staggered finned tube heat exchanger. The Numerical part of present study has been performed using ANSYS Fluent 14.5 using SST Turbulent model, while the experimental study consist from a test rig with different models of heat exchangers and all required measurement devices were build

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 05 2018
Journal Name
The Cleft Palate-craniofacial Journal
Longitudinal 3D Assessment of Facial Asymmetry in Unilateral Cleft Lip and Palate
...Show More Authors

View Publication
Scopus (23)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2013
Journal Name
Australian Journal Of Basic And Applied Sciences
CFD Simulation of Heat Transfer Augmentation in Constant Heat-Fluxed Tube fitted with Baffled Twisted Tape Inserts
...Show More Authors

Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement for a Flat Plate Solar Collector by Adding Metal Foam Blocks
...Show More Authors

Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
An experimental and numerical investigation of heat transfer effect on cyclic fatigue of gas turbine blade
...Show More Authors

Blades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont

... Show More
View Publication Preview PDF
Crossref (2)
Crossref