Preferred Language
Articles
/
joe-2040
Numerical Simulation of 3D- Flow Structure and Heat Transfer for Longitudinal Riblet Upstream of Leading Edge Endwall Junction of Nozzle Guide Vane
...Show More Authors

The simulation have been made for  3D flow structure and heat  transfer with and without

longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 models of V-groove riblet with wide ranges of height (h) and space (s). The results indicated that, the riblet endwall junction was a powerful tool for controlling the flow structure, reducing secondary flow formation,and elimination the effect of heat transfer at leading edg and passage . The drag reduction produced by riblet was proportional with their height and space. V-groove riblet with dimension of (h=1.35mm and s=2.26mm) was found to be the most effective in reduction of drag (2.7%) and heat transfer (21%) so it was selected as an optimum dimension of riblet model. The results also showed that the drag reduction produced by riblet was proportional to their size. The riblet model had a great effect in elimination spanwise ,pitchwise velocities ,but strength the streamwise velocity .At leading edge ,the effect of secondary flow was extended up to 23% from span height and 35% upstream leading edge .The riblet model caused an increase in momentom at a region very close to leading edge and to move stagnation point very close to the leading edge.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Study and Analysis of Concentric Shell and Double Tube Heat Exchanger Using - Al 2 O 3 Nanofluid
...Show More Authors

    Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 10 2013
Journal Name
Journal Of Materials Science And Engineering
Energy Transfer of Rhodamine110-Oxazine1 Mixtures Encapsulated in Glass Like Silica Xerogel Matrices
...Show More Authors

Publication Date
Wed Mar 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
ESTIMATION OF MASS TRANSFER COEFFICIENTS IN A PACKED DISTILLATION COLUMN USING BATCH MODE
...Show More Authors

This research adopts the estimation of mass transfer coefficient in batch packed bed distillation column as function of physical properties, liquid to vapour molar rates ratio (L / V), relative volatility (α), ratio of vapour and liquid diffusivities (DV / DL), ratio of vapour and liquid densities (ρV / ρL), ratio of vapour and liquid viscosities (μV/ μL).
The experiments are done using binary systems, (Ethanol Water), (Methanol Water), (Methanol Ethanol), (Benzene Hexane), (Benzene Toluene). Statistical program (multiple regression analysis) is used for estimating the overall mass transfer coefficient of vapour and liquid phases (KOV and KOL) in a correlation which represented the data fairly well.

KOV = 3.3 * 10-10

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Modeling of Mass Transfer Coefficient in Rotating Biological Contactor with Perforated Discs (RPBC)
...Show More Authors

Abstract

 In order to make an improvement associated with rotating biological contactor (RBC), a new design of biofilm reactor called as Rotating perforated disc biological contactor (RPBC) was developed in which the rotating discs are perforated. The transfer of oxygen from air to wastewater was investigated. Mass-transfer coefficient (KLa)  in the liquid phase was determined by measuring  the rate transfer of oxygen.  A   laboratory scale of (RPBC) consisted of a semicircular trough was used with a working capacity of 40 liters capacity of liquid. Synthetic wastewater was used as a liquid phase, while air was used as a gas phase.

The effects of m

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-nahrain Journal Of Science
Adsorption of P-Aminodiphenylamine with Iodine Charge Transfer Complex on Surface Arundo Plant
...Show More Authors

charge transfer complex formed by interaction between the p- aminodiphenylamine (PADPA) as electron donor with iodine as electron acceptor in ethanol at 250C as evidenced by color change and absorption. The spectrum obtained from complex PADPA – Iodine shows absorptions bands at 586 nm. All the variables which affected on the stability of complex were studies such as temperature, pH, time and concentration of acceptor. The linearity of the method was observed within a concentration rang (10–165) mg.L-1 and with a correlation coefficient (0.9996), while the molar absorbitivity and sandell sensitivity were (4643.32) L.mol-1.cm-1 and (0.0943) μg.cm-2, respectively. The adsorption of complex PADPA–I2 was studied using adsorbent surfaces

... Show More
Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Evaluation of the Stability and Flow of Asphalt Concrete Produced with Waste Brick Tile Powder as a Filler
...Show More Authors

The utilization of recycled brick tile powder as a replacement for conventional filler in the asphalt concrete mix has been studied in this research. This research evaluates the effectiveness of recycled brick tile powder and determines its optimum replacement level. Using recycled brick tile powder is significant from an environmental standpoint as it is a waste product from construction activities. Sixteen asphalt concrete samples were produced, and eight were soaked for a day. Samples contained 5% Bitumen, 2% to 5% brick tile powder, and conventional stone dust filler. The properties of samples were evaluated using the Marshall test. It was observed that the resistance to stiffness and deformation of asphalt concrete

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Effect of Design Parameters and Support Conditions on Natural Frequency of Pipe Excited by a Turbulent Internal Flow
...Show More Authors

In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Effects of Gas Flow on Spectral Properties of Plasma Jet Induced by Microwave
...Show More Authors

In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
The influence of argon gas flow in the killing of staphylococcus epidermidis bacteria
...Show More Authors

In this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
The Effect of Gas Flow on Plasma Parameters Induced by Microwave
...Show More Authors

In this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles

View Publication Preview PDF
Scopus (19)
Crossref (8)
Scopus Clarivate Crossref