Crop coefficient for cherries was evaluated by measure the water consumption in Michigan State to find its variation with time as the plant growth. Crop coefficients value (Kc) for cherries were predicated by Michigan State University (MSU) and also by Food and Agriculture Organization (FAO) according to consume of water through the season. In this paper crop coefficients for cherries are modified accordingly to the actual measurements of soil moisture content. Actual evapotranspiration (consumptive use) were measured by the soil moisture readings using Time Domain Reflectometers (TDR), and compared with the actual potential evapotranspiration that calculated by using modified Penman-Monteith equation which depends on metrological station and by using pan evaporation method. Absolut error techniques show that the predicated crop coefficient by MSU should be modified and changed from 1.0 to 1.20 during June, and from 1.02 during July and August to 1.2 to reduce the crop water stress and give better water management and perfect schedule for irrigation process.
The road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstractio
... Show MoreThe road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstraction and examin
... Show MoreIn the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These pro
... Show MoreIn the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved . mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These prope
... Show MoreThis work presents plants recognition system with rotation invariant based on plant leaf. Wavelet energy features are extracted for sub-images (blocks) beside three of leaf shape features: [area, perimeter, circularity ratio]. (8) species of leaves are used in different size and color, (15) samples for each leaf are used. Leaves images are rotated at angles: 90˚, 180˚, 270˚(counterclockwise,clockwise). Euclidean distance is used, the recognition rate was 98.2% with/without rotation.
In this study, the four tests employed for non-linear dependence which is Engle (1982), McLeod &Li (1983), Tsay (1986), and Hinich & Patterson (1995). To test the null hypothesis that the time series is a serially independent and identical distribution process .The linear structure is removed from the data which is represent the sales of State Company for Electrical Industries, through a pre-whitening model, AR (p) model .From The results for tests to the data is not so clear.
The aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were
The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea
... Show More