ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data set sub-division into training, testing and holdout data sub-sets, and different number of hidden nodes in the hidden layer. It is found that it is not necessary that the nearest station to the station under prediction has the highest effect; this may be attributed to the high differences in elevation between the stations. It can also found that the variance is not necessary has effect on the correlation coefficient obtained.
Transportation network could be considered as a function of the developmental level of the Iraq, that it is representing the sensitive nerve of the economic activity and the corner stone for the implementation of development plans and developing the spatial structure.
The main theme of this search is to show the characteristics of the regional transportation network in Iraq and to determine the most important effective spatial characteristics and the dimension of that effect negatively or positively. Further this search tries to draw an imagination for the connection between network as a spatial phenomenon and the surrounded natural and human variables within the spatial structure. This search aiming also to determine the nat
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreConcentrations of uranium were measured in this study for twenty soil samples from four areas with different depths (soil surface-20-40-60-80)cm .The study regions include Missan Governorate (Al-Iskan area,Al-Shibbana area ,Hai-Al Moualimin Al Jadied area ,Sector 30 area). The Uranium concentrations in soil samples measured by using fission tracks registration in (CR-39) track detector that caused by the bombardment of (U-283) with thermal neutrons from (241Am-Be) neutron source that has flux neutron thermal of (5 ×103 n cm-2 s-1). The concentrations values were calculated by a comparison with standard samples. Through out the result, it was found that averages of uranium concentrations in soil samples were as the following : Al - Iskan
... Show MoreThe road networks is considered to be one of the determinants that controls to specify the areas of human activities, which it depend on to specify the arrival cost , in addition it is useful to achieve the connectivity for interaction and human activities , and shorten the distance and time between the population and places of service. The density of the road network in any space directly affected by the density of population and the type of economic activities and administrative functions performed by the space. On this basis, the subject of this study is reflected in the quantitative analysis of the roads network in the Governorate of Karbala. The study consists the quantitative analysis for the roads network and the Urban Nodes in th
... Show Moreسلمان، ندى نجيب. 2015. التباين المكاني السكان الأميين في الوطن العربي للمدة 1990-2009. مجلة آداب ذي قار،مج. 4، ع. 15، ص ص. 101-126.
The primary aim of this research was to study visual spatial attention and its impact on the accuracy of the diagonal spike in volleyball. A total of 20 volleyball players of Baghdad participated in this study. The sample was homogeneous in terms of height, weight and age of the players. The tests used in the present study were: 1) Visual Spatial Attention Test. 2) Volleyball Spike Test. Based on the findings of the study, the researcher concluded that visual spatial attention has a significant impact on the accuracy of the diagonal spike in volleyball.
The study focuses on Kamez model and the Claus Meyer model of instructional design, which are models that provide the learner with educational experiences to suit the logical information of the learner and the variety of instructional models. Research Objective: The present research aims to identify Limitations of the study. The current research is determined by ((fourth grade preparatory students, the book of the date of the fourth preparatory course)) Chapter II includes Arabic and foreign studies on the model of Kemp and Claus Mayer in the acquisition of concepts and direction towards the material. Chapter III Experimental Design: The researcher adopted an experimental design with two experimental groups and a control group. The resea
... Show MoreThe density-based spatial clustering for applications with noise (DBSCAN) is one of the most popular applications of clustering in data mining, and it is used to identify useful patterns and interesting distributions in the underlying data. Aggregation methods for classifying nonlinear aggregated data. In particular, DNA methylations, gene expression. That show the differentially skewed by distance sites and grouped nonlinearly by cancer daisies and the change Situations for gene excretion on it. Under these conditions, DBSCAN is expected to have a desirable clustering feature i that can be used to show the results of the changes. This research reviews the DBSCAN and compares its performance with other algorithms, such as the tradit
... Show MoreThe study was conducted over the period of Oct 2018 to Apr 2019 and is aimed for the detection and estimation of four hazardous Volatile Organic Compounds VOC (benzene, toluene, ethylbenzene, and xylene) so-called (BTEX) in samples collected from the produced water in the Al-Ahdab oil field in Iraq also to track their availability in the important natural water sources around the field. These compounds pose a risk to human health as well as environment. To avoid the laborious and tiresome conventional extraction methods, water samples were collected and concentrated using solid-phase extraction technique (SPE) which is a robust and cost-effective method of sample extraction with minimal exposure and handling of solvents and then to be analy
... Show MoreAbstract\
In this research, estimated the reliability of water system network in Baghdad was done. to assess its performance during a specific period. a fault tree through static and dynamic gates was belt and these gates represent logical relationships between the main events in the network and analyzed using dynamic Bayesian networks . As it has been applied Dynamic Bayesian networks estimate reliability by translating dynamic fault tree to Dynamic Bayesian networks and reliability of the system appreciated. As was the potential for the expense of each phase of the network for each gate . Because there are two parts to the Dynamic Bayesian networks and two part of gate (AND), which includes the three basic units of the
... Show More