ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data set sub-division into training, testing and holdout data sub-sets, and different number of hidden nodes in the hidden layer. It is found that it is not necessary that the nearest station to the station under prediction has the highest effect; this may be attributed to the high differences in elevation between the stations. It can also found that the variance is not necessary has effect on the correlation coefficient obtained.
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreThe study addressed the water ecosystems of the marshes of Maysan Governorate as one of the important areas in Iraq in terms of the environmental, economic and tourism aspects. This area was exposed to great environmental changes due to natural and human factors which greatly affected the water ecosystem and made the area susceptible to many problems that affected the biological life of living organisms. The marshes of Maysan Governorate was affected by vital factors and non-vital factors. The marshes of Maysan Governorate was characterized by the UN Organization as one of the most important centers of biodiversity in the world because of the abundance of different and rare living organisms such as birds, fish, and reptiles as well as the e
... Show MoreArtificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show More
Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed th
... Show MoreIncremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th
... Show MoreIn this research the activity of radon gas in air in Baghad governorate,Iraq, using “alpha-emitters track registration (CR-39) track detector were measured. This measurement was done for selected areas from Baghdad Governorate, The results obtained shows that the highest average concentrations for Rn-222 is (179.077 Bq/m^3) which was recorded within Al-Shaaib city and less average concentrations was (15.79 Bq/m^3) in the nearby residential area of Baghdad International Airport and the overall average concentrations is (86.508 Bq/m^3) for these regions. Then the radon concentration was measured annual effective dose calculated from radon concentration and found in range from 0.4031 mSv/y to 4.5179 mSv /y with an average value of 2.1824 m
... Show More