The road transportation system is considered as major component of the infrastructure in any country, it affects the developments in economy and social activities. The Asphalt Concrete which is considered as the major pavement material for the road transportation system in Baghdad is subjected to continuous deterioration with time due to traffic loading and environmental conditions, it was felt that implementing a comprehensive pavement maintenance management system (PMMS), which should be capable for preserving the functional and structural conditions of pavement layers, is essential. This work presents the development of PMMS with Visual inspection technique for evaluating the Asphalt Concrete pavement surface condition; common types of Asphalt Concrete distress including (bleeding of Asphalt, patching, block cracking, edge cracking, longitudinal and transverse cracking, rutting, pot holes, longitudinal and transverse deformation) with their various severity and intensity conditions have been included in the system as data base. The surface of the pavement was divided into sections, and the pavement condition is visually evaluated by the raters using specially designed forms, each type of defect was measured, classified, and rated according to type, severity, and extent. Data will be fed to the system using the computer, various types of intensity and severity of distress were analyzed by the system, the present condition rating (PCR) of the pavement section is determined, and the system suggests the required maintenance action. The developed system which is assigned (PMMS-09) was verified in evaluating the pavement surface condition at AL-Jaderiah campus roadway network. The results indicated that the system is sound in evaluation of the pavement condition and in suggestion of the proper maintenance to reserve the pavement condition.
Car drivers hear many kinds of noise inside their vehicles' cabins, and the most annoying ones are the noise generated by tires, engines, and outside winds. Noise affects the comfort of the passengers inside the cabin, and it’s sad to say that modern cars are noisier in many kinds of noise signals due to using a lot of plastic materials in new budget cars. For expensive and luxury cars, the problem is solved by using better sound insulation materials, but for the budget ones, the approach used here is effective. It is called Active Noise Cancellation and can be done using analog or digital electronics. An operational amplifier and filters are used for the analog one, and in the digital one, signal processor chips are used. In engineeri
... Show MoreGiven the importance that the Iraqi banking system in general and Islamic banks in particular, there must be effective supervisory oversight of these banks, as supervisory oversight has an essential and effective role in the development and evaluation of the performance of banks, through the application of legal controls and rules. Banking aimed at making sure that its financial centers are safe, protecting depositors' funds, and achieving both monetary and economic stability. This research studied and evaluates the mechanisms and tools used by the Central Bank of Iraq in the supervision and supervision of these banks. Therefore, the research aimed to measure the type and direction of the relationship between the requirements of supervis
... Show MoreThese days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show MoreAn enzyme linked immunosorbent assay (ELISA) for the detection and quantitation of human immunoglobulin G (IgG) antibodies against vero- cytotoxine (VT) producing Escherichia coli serogroup O157:H7 was produced. E. coli O157: H7 lipopolysaccharide was extracted from locally isolated strains by using hot phenol- water method, followed by partial purification using gel filtration chromatography by sepharose- 4B. The purity of the lipopolysaccharide was checked by measuring the protein and nucleic acid content and then used as antigen. Four isolates of vero- cytotoxin producing E. coli serogroup O157:H7 was obtained by culturing 350 stool samples from children suffering from bloody diarrhea. These isolates were identified on bacteriological, s
... Show MoreAbstract  
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show More