Preferred Language
Articles
/
joe-2025
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 16 2023
Journal Name
Iraqi National Journal Of Nursing Specialties
Association between Enhancing Learning Needs and Demographic Characteristic of Patients with Myocardial Infarction: العلاقة بين تعزيز احتياجات التعلم والخصائص الديموغرافية لمرضى احتشاء عضلة القلب
...Show More Authors

Abstract

Objectives: To find out the association between enhancing learning needs and demographic characteristic of (gender, education level and age).

Methods: This study was conducted on purposive sample was selected to obtain representative and accurate data consisting of (90) patients who are in a peroid of recovering from myocardial infarction at Missan Center for Cardiac Diseases and Surgery, (10) patients were excluded for the pilot study, Data were analyzed using descriptive statistical data analysis approach of frequency, percentage,  and analysis of variance (ANOVA).

Results: The study finding shows, there was sign

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases
...Show More Authors

Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applying Ensemble Classifier, K-Nearest Neighbor and Decision Tree for Predicting Oral Reading Rate Levels
...Show More Authors

For many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Apr 20 2024
Journal Name
Baghdad Science Journal
طريقة مقترحة لتغيير حجم الصورة باستخدام منحني Bezier
...Show More Authors

عملية تغيير حجم الصورة في مجال معالجة الصور باستخدام التحويلات الهندسية بدون تغيير دقة الصورة تعرف ب image scaling  او image resizing. عملية تغيير حجم الصورة لها تطبيقات واسعة في مجال الحاسوب والهاتف النقال والاجهزة الالكترونية الاخرى. يقترح هذا البحث طريقة لتغيير حجم الصورة باستخدام المعادلات الخاصة بمنحني Bezier وكيفية الحصول على افضل نتائج. تم استخدام Bezier curve في اعمال سابقة في مجالات مختلفة ولكن في هذا البحث تم استخد

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Image Compression Using Tap 9/7 Wavelet Transform and Quadtree Coding Scheme
...Show More Authors

This paper is concerned with the design and implementation of an image compression method based on biorthogonal tap-9/7 discrete wavelet transform (DWT) and quadtree coding method. As a first step the color correlation is handled using YUV color representation instead of RGB. Then, the chromatic sub-bands are downsampled, and the data of each color band is transformed using wavelet transform. The produced wavelet sub-bands are quantized using hierarchal scalar quantization method. The detail quantized coefficient is coded using quadtree coding followed by Lempel-Ziv-Welch (LZW) encoding. While the approximation coefficients are coded using delta coding followed by LZW encoding. The test results indicated that the compression results are com

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Medical Image Enhancement to Extract Brain Tumors from CT and MRI images
...Show More Authors

     Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean.  The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
COMPARATIVE STUDY FOR EDGE DETECTION OF NOISY IMAGE USING SOBEL AND LAPLACE OPERATORS
...Show More Authors

Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
Bit Plane Slicing, Wavelet and Polynomials Mixing for Image Compression
...Show More Authors

     This paper introduced a hybrid technique for lossless image compression of natural and medical images; it is based on integrating the bit plane slicing and Wavelet transform along with a mixed polynomial of linear and non linear base. The experiments showed high compression performance with fully grunted reconstruction.

View Publication Preview PDF
Scopus (3)
Scopus Crossref