Preferred Language
Articles
/
joe-2025
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jan 16 2023
Journal Name
Iraqi National Journal Of Nursing Specialties
Association between Enhancing Learning Needs and Demographic Characteristic of Patients with Myocardial Infarction: العلاقة بين تعزيز احتياجات التعلم والخصائص الديموغرافية لمرضى احتشاء عضلة القلب
...Show More Authors

Abstract

Objectives: To find out the association between enhancing learning needs and demographic characteristic of (gender, education level and age).

Methods: This study was conducted on purposive sample was selected to obtain representative and accurate data consisting of (90) patients who are in a peroid of recovering from myocardial infarction at Missan Center for Cardiac Diseases and Surgery, (10) patients were excluded for the pilot study, Data were analyzed using descriptive statistical data analysis approach of frequency, percentage,  and analysis of variance (ANOVA).

Results: The study finding shows, there was sign

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Permeability Determination of Tertiary Reservoir/Ajeel Oil Field
...Show More Authors

This paper discusses the method for determining the permeability values of Tertiary Reservoir in Ajeel field (Jeribe, dhiban, Euphrates) units and this study is very important to determine the permeability values that it is needed to detect the economic value of oil in Tertiary Formation. This study based on core data from nine wells and log data from twelve wells. The wells are AJ-1, AJ-4, AJ-6, AJ-7, AJ-10, AJ-12, AJ-13, AJ-14, AJ-15, AJ-22, AJ-25, and AJ-54, but we have chosen three wells (AJ4, AJ6, and AJ10) to study in this paper. Three methods are used for this work and this study indicates that one of the best way of obtaining permeability is the Neural network method because the values of permeability obtained be

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Aug 07 2025
Journal Name
Journal Of Image And Graphics
Analysis Evolution of Image Caption Techniques: Combining Conventional and Modern Methods for Improvement
...Show More Authors

This study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Enhancement CT Scan Image and Study Electronic, Structural and Vibrational Properties of Iobenguane
...Show More Authors

This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast

... Show More
View Publication Preview PDF
Crossref