Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.
Examining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference
... Show MoreThe work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreE-learning is a lifeline for the educational process, which contributed to the sustainability of working educational organizations and prevented them from stopping, so the study came to measure the compatibility between E-learning quality dimensions (information technology, educational curricula, teaching methods, and intellectual capital of educational institution) as an independent variable, and educational services quality dimensions represented by (safety, tangibility, reliability and Confidence) as a dependent variable. The sample was 150 teachers was drawn from the College of Administration and Economics community of 293 teachers through the use of several statistical methods to measure the degree of correlation and impact between the
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreA number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V col
... Show MorePurpose: The purpose of this study was to clarify the basic dimensions, which seeks to indestructible scenarios practices within the organization, as a final result from the use of this philosophy.
Methodology: The methodology that focuses adoption researchers to study survey of major literature that dealt with this subject in order to provide a conceptual theoretical conception of scenarios theory .
The most prominent findings: The only successful formulation of scenarios, when you reach the decision-maker's mind wa takes aim to form a correct mental models, which appear in the expansion of Perception managers, and adopted as the basis of the decisions taken. The strength l
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
Abstract. Fibrewise micro-topological spaces be a useful tool in various branches of mathematics. These mathematical objects are constructed by assigning a micro-topology to each fibre from a fibre bundle. The fibrewise micro-topological space is then formed by taking the direct limit of these individual micro-topological spaces. It can be adapted to analyze various mathematical structures, from algebraic geometry to differential equations. In this study, we delve into the generalizations of fibrewise micro-topological spaces and explore the applications of these abstract structures in different branches of mathematics. This study aims to define the fibrewise micro topological space through the generalizations that we use in this paper, whi
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame