Preferred Language
Articles
/
joe-2025
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
3-D Packing in Container using Teaching Learning Based Optimization Algorithm
...Show More Authors

The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
A New Efficient Hybrid Approach for Machine Learning-Based Firefly Optimization
...Show More Authors

     Optimization is the task of minimizing or maximizing an objective function f(x) parameterized by x. A series of effective numerical optimization methods have become popular for improving the performance and efficiency of other methods characterized by high-quality solutions and high convergence speed. In recent years, there are a lot of interest in hybrid metaheuristics, where more than one method is ideally combined into one new method that has the ability to solve many problems rapidly and efficiently. The basic concept of the proposed method is based on the addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the Firefly Algorithm (FA) model and creating new individuals. Some stan

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 02 2022
Journal Name
Journal Of Educational And Psychological Researches
King Khalid University towards Strategies Compatible with Brain-Based Learning (BBL)
...Show More Authors

The study aimed to reveal the level of knowledge and tendencies of high- study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with brain-based learning (BBL). And Then, putting a proposed concept to develop knowledge and tendencies of high-study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with Brain-based learning (BBL). For achieving this goal, a cognitive test and a scale of tendency were prepared to apply harmonious strategies with brain-based learning. The descriptive approach was used because it suits the goals of the study. The study sample consisted of (70) male and female students of postgraduate

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Study of the Influence of Different Optical Properties on the Image of Compound light microscope
...Show More Authors

Microscope images are characterized by a number of specific parameters, the influence of such parameters (intensity, magnification, numerical aperture, diaphragms aperture, segmentation, and edge detecting technique) on measurement in optical microscope images have been determined with using a powerful image processing methods. As one of the most widespread techniques in biological investigation and dynamic process, light compound microscopy has used to analyze the optical properties of biological images. The results indicate that a wide aperture allows maximum resolution and depth of field, but decreases the contrast. While a small aperture improve visibility and contrast but decreases the resolution. The results also show the best perf

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 25 2022
Journal Name
Lubricants
Development of Hybrid Intelligent Models for Prediction Machining Performance Measure in End Milling of Ti6Al4V Alloy with PVD Coated Tool under Dry Cutting Conditions
...Show More Authors

Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Developing a Predictive Model and Multi-Objective Optimization of a Photovoltaic/Thermal System Based on Energy and Exergy Analysis Using Response Surface Methodology
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Engineering
Material Selection for Unmanned Aerial Vehicles (UAVs) Wings Using Ashby Indices Integrated with Grey Relation Analysis Approach Based on Weighted Entropy for Ranking
...Show More Authors

The designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Joint Source-Channel Coding for Wireless Image Transmission based OFDM-IDMA Systems
...Show More Authors

The source and channel coding for wireless data transmission can reduce
distortion, complexity and delay in multimedia services. In this paper, a joint sourcechannel
coding is proposed for orthogonal frequency division multiplexing -
interleave division multiple access (OFDM-IDMA) systems to transmit the
compressed images over noisy channels. OFDM-IDMA combines advantages of
both OFDM and IDMA, where OFDM removes inter symbol interference (ISI)
problems and IDMA removes multiple access interference (MAI). Convolutional
coding is used as a channel coding, while the hybrid compression method is used as
a source coding scheme. The hybrid compression scheme is based on wavelet
transform, bit plane slicing, polynomi

... Show More
View Publication Preview PDF