As a result of the growth of economic, demographic and building activities in Iraq, that necessitates carrying out geotechnical investigations for the dune sand to study behavior of footings resting on these soils. To determine these properties and to assess the suitability of these materials for resting shallow foundation on it, an extensive laboratory testing program was carried out. Chemical tests were carried out to evaluate any possible effects of the mineralogical composition of the soil on behavior of foundation rested on dune sands.
Collapse tests were also conducted to trace any collapse potential. Loading tests were carried out for optimum water content and different shapes of footing. Loading test recommends manufacturing of steel box and footing models with different shapes and dimensions. The results indicated that, Affek dune sand is predominantly fine sand with non-plastic fines.
Because the content of sulphate (as SO3) is only 0.05%, and the alkalinity of dune sand, which reduces the corrosion potential, ordinary Portland cement can be used in concrete foundation construction in/on dune sands. The results of collapsing tests showed that Affek dune sand exhibit a slight to moderate potential depending on stress level. Due to Soaking by water, the reduction in bearing capacity of optimum state was about 45%. The bearing capacity of square footing was greater than those of the circular and rectangular footings.
Effluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreIndustrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste r
... Show MoreAim:- to show that not all survival curves without shoulder are not able to repair or have lost the ability for the accumulation of sublethal damage.
Background:- the shoulder of the survival curve is considered as a
region of accumulation of sublethal damage also as an indicator for cell capacity to repair. The size can be influenced by the change ofthe slope of the linear portion of the survival curve.
Results:- we have shown that a survival curve with shoulder size of
1.5 Gy can be a straight line when the slope of the exponential part is changed so the
... Show MoreThe aim of this paper is to determine the flexural moment capacity of Reactive Powder Concrete (RPC) two-way slabs based on three models proposed by previous studies (Model 1, Model 2, and Model 3). The results obtained from these models were compared with those obtained from experimental work to check the accuracy and the applicability of the adopted theoretical models. The experimental program included the testing of three simply supported RPC two-way slabs (1000x1000x70) mm each. The tested specimens had identical properties except their steel fibres volume ratios (0.5 %, 1 %, and 1.5 %). The comparison with the experimental data showed that (Model 3) is the most suitable one among the three models. Model 1 was found to underestimate the
... Show MoreScrew piles are widely used in supporting structures subjected to pullout forces, such as power towers and offshore structures, and this research investigates their performance in gypseous soil of medium relative density. The bearing capacity and displacement of a single screw pile model inserted in gypseous soil with various diameters (D = 20, 30, and 40) mm are examined in this study. The soil used in the testing had a gypsum content of 40% and the bedding soil had a relative density of 40%. To simulate the pullout testing in the lab, a physical model was manufactured with specific dimensions. Three steel screw piles with helix diameters of 20, 30, and 40 mm are used, with a total length of 500 mm. The helix is continuous over the
... Show Moreأن التطور العلمي الحاصل فيما يخص المجال الرياضي أرسى آفاق جديدة لمواكبة التطور الكبير في مجا ل الألعاب والفعاليات الرياضية المختلفة ,و أن تحقيق النتائج الجيدة في فعاليات العاب القوى بشكل عام والثلاثية بشكل خاص في التدريب الرياضي يتطلب إتباع الأساليب العلمية الدقيقة والموضوعية بشكل سليم ومخطط له،فضلا عنة تطبيق نظريات ومنحى جديد لمواكبة الاتجاهات الحديثة في تحقيق النتائج الجيدة للوصول إلى المستويات العالية
... Show More