Experimental and numerical investigations of the centrifugal pump performance at non-cavitating and cavitating flow conditions were carried out in the present study. Experiments were performed by applying a vacuum to a closed-loop system to investigate the effects of the net positive suction head available (NPSHa), flow rate, water temperature and pump speed on the centrifugal pump performance. Accordingly, many of the important parameters concerning cavitation phenomenon were calculated. Also, the noise which is accompanied by cavitation was measured. Numerical analysis was implemented for two phase flow (the water and its vapor) using a 2-D simulation by ANSYS FLUENT software to investigate the internal flow of centrifugal pump under cavitating conditions. It was observed that with decreasing NPSHa, the values of the pump head, flow rate and efficiency initially remain constant, but with further reduction in NPSHa these parameters will decrease. Also, it was found that at 3% head drop the percentage drop of the flow rate is less than 2% whereas the percentage drop of the efficiency is greater than 3%. Numerically, it was noticed that the cavitation regions appear at the leading edge of suction side of the impeller blades which represents the lowest pressure area inside the computational domain of the centrifugal pump.
In this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close
... Show MoreA lotic ecosystem is considered a source of carbon dioxide (CO2) in the atmosphere where it becomes supersaturated with CO2, which contributes to the global carbon cycle. To enhance our comprehension of the roles of CO2 in rivers, an outdoor experiment was designed with controlled carbon source inputs to investigate the roles of the dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the phytoplankton community. Plastic enclosures were installed in the Tigris River within Baghdad for that goal. Samples were collected on the first day, as well as on the 5th and the 12th days from 14 enclosures. The enclosures were treated by artificial glucose (C6H12O6) (10, 20, 30mg/ l) as DOC sources, while sodium bicarbonate (NaHCO3) (1
... Show MorePolarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th
... Show MoreCarrageenan extract is a compound of sulfated polyglycan that is taken out from red seaweeds. Being hydrocolloid in nature, carrageenan has gelling, emulsifying and thickening properties allowing it to be commonly used in the oral healthcare products and cosmetics. Due to its bioactive compounds, carrageenan has been shown to have antimicrobial, antiviral, and antitumor properties. The purpose of this work is to study the probable use of carrageenan on the diseases that are related to oral cavity and on the genomic DNA in in vitro experimental model
In this study, the effects of k-carrageenan on four different cell lines related to the cancer and normal cells which cultured on selective media were done. Moreover, the eff
... Show Moreto study the discribrion and the pollution in the environment in the south of baghdad samples of waste water from industrail units using the mercury in its process also
The Ethanolic extracts of different Iraqi indigenous plants which belong to different families showed algicidal activity against Anabaena, Nostoc and Myxosarcina species. Peganum harmala extract was the most potent in controlling the growth of tested Cyanobacterial species
Chemiluminescenc (CL), light emitted during chemical reaction, is one of the accurate methods used to detect directly oxygen free radicals. In this study, luminol was used as CL detector, to detect the concentration of free radicals formed in whole blood exposed to high power microwave pulses. The changes in the intensity of CL signal gives a clear relation between the concentration of free radicals formed by radiation in blood and changes in blood properties such as hemolysis of blood cells. This is done by measuring the electrical sytoplsimic electrical properties, the results are substituted in Maxwell-Wagner equation, to obtain electrical conductivity of cytoplasm, which is 18.3 ms/cm, while at suspension med
... Show MoreBackground: Manuka honey (MH) is a mono-floral honey derived from the Manuka tree (Leptospermum scoparium). MH is a highly recognized for its non-peroxide antibacterial activities, which are mostly related to its unique methylglyoxal content (MGO) in MH. The beneficial phytochemicals in MH is directly related to their favorable health effects, which include wound healing, anticancer, antioxidant, and anti-inflammatory properties. Aims: The purpose of this study was to evaluate the effect of MH on pro-inflammatory cytokines (IL-8 and TNF-α) in patients with gingivitis and compare it with chlorhexidine (CHX) and distilled water (DW). Materials and Methods: This study was a randomized, double blinded, and parallel clinical trial. Forty-fiv
... Show MoreAn Eigen-state expansion method is applied to the transition of the Auger de-excitation charge transfer (AD) process in the interaction between clean Cu,Al and Na surfaces and excited incident gases H and He .We use this method to describe the effective surfaces electronic structure. It's shown that the AD efficiency is deeply influenced by the presence of the energy band for the surfaces and the potential energy stored within the excited incident atom, thus for long interaction time we use a slowly atom's about 1KeV to scatter from metals surfaces where the electron couldn't probe the metal band structure and Za the surface - projectile distance. Also we drive a new formula for AD interaction Matrix element