This paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced system, a control law is designed using pole placement and output feedback techniques. The analyzed case studies concern the vibration reduction of a cantilever beam with a collocated symmetric piezoelectric sensor/actuator pair bonded on the surface. The transverse displacement time history, for an initial displacement field at the free end, is evaluated. Results are compared with other works, and the control design shows that Pole Placement method is an effective method for vibration suppression of the beam and settling time reduction.
Internet of Things (IoT) is a recent technology paradigm that creates a global network of machines and devices that are capable of communicating with each other. Security cameras, sensors, vehicles, buildings, and software are examples of devices that can exchange data between each other. IoT is recognized as one of the most important areas of future technologies and is gaining vast recognition in a wide range of applications and fields related to smart homes and cities, military, education, hospitals, homeland security systems, transportation and autonomous connected cars, agriculture, intelligent shopping systems, and other modern technologies. This book explores the most important IoT automated and smart applications to help the reader u
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreThe aim of this study is to look at the potential of a local sustainable energy network in a pre-existing context to develop a novel design beneficial to the environment. Nowadays, the concept of smart cities is still in the developmental phase/stage andwe are currently residing in a transitional period, therefore it is very important to discover new solutions that show direct benefits the people may get from transforming their city from a traditional to a smart city. Using experience and knowledge of successful projects in various European and non-European smart cities, this study attempts to demonstrate the practical potential of gradually moving existing cities to t
... Show MoreChallenges facing the transition of traditional cities to smart: Studying the challenges faced by the transition of a traditional area such as Al-Kadhimiya city center to the smart style
Smart systems are the trend for modern organizations and should meet the quality of services that expect to produce. Internet of Everything (IoE) helped smart systems to adopt microcontrollers for improving the performance. Analyzing and controlling data in such a system are critical issues. In this study, a survey of IoE systems conducted to show how to apply a suitable model that meets such system requirements. The analysis of some microcontroller boards is explored based on known features. Factors for applying IoE devices have been defined such as connectivity, power consumption, compatibility, and cost. Different methods have been explained as an overview of applying IoE systems. Further, different approaches for applying IoE technology
... Show MoreBack ground: Zygote produce from once a sperm fertilizes an egg cell. Then, the zygote (unicellular) will begin chain of cellular cleavages to produce multicellular mass, its embryo, the differentiated to different tissues and organism. The development of the embryo is called embryogenesis. Coenzyme Q10, is an antioxidant produced in the body. It boosts cellular energy and may enhance the immune system. CoQ10 is present and measurable in seminal fluid, the concentration of CoQ10 directly correlates with both sperm count and motility. It is beneficial in the prevention and treatment a wide range of health problems. Objectives: The present study was aimed to investigate the possibility of using coenzyme Q10 to improve in vitro fertilization (
... Show MoreResearch in consumer science has proven that grocery shopping is a complex and distressing process. Further, the task of generating the grocery lists for the grocery shopping is always undervalued as the effort and time took to create and manage the grocery lists are unseen and unrecognized. Even though grocery lists represent consumers’ purchase intention, research pertaining the grocery lists does not get much attention from researchers; therefore, limited studies about the topic are found in the literature. Hence, this study aims at bridging the gap by designing and developing a mobile app (application) for creating and managing grocery lists using modern smartphones. Smartphones are pervasive and become a necessity for everyone tod
... Show More<p>The directing of a wheeled robot in an unknown moving environment with physical barriers is a difficult proposition. In particular, having an optimal or near-optimal path that avoids obstacles is a major challenge. In this paper, a modified neuro-controller mechanism is proposed for controlling the movement of an indoor mobile robot. The proposed mechanism is based on the design of a modified Elman neural network (MENN) with an effective element aware gate (MEEG) as the neuro-controller. This controller is updated to overcome the rigid and dynamic barriers in the indoor area. The proposed controller is implemented with a mobile robot known as Khepera IV in a practical manner. The practical results demonstrate that the propo
... Show More