Orthogonal Frequency Division Multiplexing (OFDM) is one of recent years multicarrier modulation used in order to combat the Inter Symbol Interference (ISI) introduced by frequency selective mobile radio channel. The circular extension of the data symbol, commonly referred to as cyclic prefix is one of the key elements in an OFDM transmission scheme. This paper study The influence of the cyclic prefix duration on the BER performance of an OFDM-VCPL (Orthogonal frequency division multiplexing - Variable Cyclic Prefix Length) system and the conventional OFDM system with frame 64-QAM modulation is evaluated by means of computer simulation in a multipath fading channel. The adaptation of CP is done with respect to the delay spread estimation of the channel.
The aim of this paper is to measure the characteristics properties of 3 m radio telescope that installed inside Baghdad University campus. The measurements of this study cover some of the fundamental parameters at 1.42 GHz. These parameters concentrated principally on, the system noise temperature, signal to noise ratio and sensitivity, half power beam width, aperture efficiency, and effective area. These parameters are estimated via different radio sources observation like Cas-A, full moon, sky background, and solar drift scan observations. From the results of these observations, these parameters are found to be approximately 64 K, 1.2, 0.9 Jansky, 3.7°, 0.54, and 3.8 m2 respectively. The parameters values have vital affect to quantitativ
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreA new data for Fusion power density has been obtained for T-3He and T-T fusion reactions, power density is a substantial term in the researches related to the fusion energy generation and ignition calculations of magnetic confined systems. In the current work, thermal nuclear reactivities, power densities of a fusion reactors and the ignition condition inquiry are achieved by using a new and accurate formula of cross section, the maximum values of fusion power density for T-3He and TT reaction are 1.1×107 W/m3 at T=700 KeV and 4.7×106 W/m3 at T=500 KeV respectively, While Zeff suggested to be 1.44 for the two reactions. Bremsstrahlung radiation has also been determined to reaching self- sustaining reactors, Bremsstrahlung values are 4.5×
... Show MoreBecause of cost-effective production and abundant resources of calcium, Ca-ion batteries (CIBs) are an appropriate option to alternate Li-ion batteries (LIBs). A new category of anode materials for CIBs has emerged since the successful synthesis of carbon nanotubes, which are B and N doped derivatives of it. For high-performance CIBs, BC2N nanotube (BC2NNT) has been studied as promising anode materials. In order to comprehend electrochemical attributes, cycling stability, and adsorption behavior of BC2NNT, first-principles computations have been executed. Based on nuclear magnetic resonance computations, two types of hexagonal rings (B2C2N2 (I) and BC4N (II)) were specified that are non-aromatic. Ca has adsorption on B2C2N2 and BC4N with ad
... Show MoreBiodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show More