Orthogonal Frequency Division Multiplexing (OFDM) is one of recent years multicarrier modulation used in order to combat the Inter Symbol Interference (ISI) introduced by frequency selective mobile radio channel. The circular extension of the data symbol, commonly referred to as cyclic prefix is one of the key elements in an OFDM transmission scheme. This paper study The influence of the cyclic prefix duration on the BER performance of an OFDM-VCPL (Orthogonal frequency division multiplexing - Variable Cyclic Prefix Length) system and the conventional OFDM system with frame 64-QAM modulation is evaluated by means of computer simulation in a multipath fading channel. The adaptation of CP is done with respect to the delay spread estimation of the channel.
The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreA new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reli
... Show MoreThe Sliding Mode Control (SMC) has been among powerful control techniques increasingly. Much attention is paid to both theoretical and practical aspects of disciplines due to their distinctive characteristics such as insensitivity to bounded matched uncertainties, reduction of the order of sliding equations of motion, decoupling mechanical systems design. In the current study, two-link robot performance in the Classical SMC is enhanced via Adaptive Sliding Mode Controller (ASMC) despite uncertainty, external disturbance, and coulomb friction. The key idea is abstracted as follows: switching gains are depressed to the low allowable values, resulting in decreased chattering motion and control's efforts of the two-link robo
... Show MoreThe regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in