Computations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model describes the imbibition process and the other describes the drainage process. The values of the relative permeability parameters are calculated by employing Rosenbrock optimization procedure. The reliability of this procedure has been confirmed by applying it to four displacement cases. The optimum values of the relative permeability parameters, which reflect the final shape of the relative permeability curves, are achieved at the minimum value of the objective function. All the above processes are be embodied in relative permeability package RPP which is constructed in this study using FORTRAN language.
Objective: The study aimed to determine quality of life domains for adult patients with limbs loss and to identify
the association between quality of life domains and demographic characteristics and medical information.
Methodology: A descriptive study was carried out at Baghdad artificial limb center, Al-Salam medical
rehabilitation center, Al-Ghadeer medical rehabilitation center and the rheumatoid and medical rehabilitation
center for the period from September 2007 to April 2008. A purposive ''non- probability'' sample of (200)
patients with limbs loss. Questionnaire form was constructed for the purpose of the study. Data were collected
through the application of the questionnaire and interview technique. Data were a
We propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreChromatographic and spectrophotometric methods for the estimation of mebendazole in
pharmaceutical products were developed. The flow injection method was based on the oxidation of
mebendazole by a known excess of sodium hypochlorite at pH=9.5. The excess sodium hypochlorite is then
reacted with chloranilic acid (CAA) to bleach out its color. The absorbance of the excess CAA was recorded
at 530 nm. The method is fast, simple, selective, and sensitive. The chromatographic method was carried out
on a Varian C18 column. The mobile phase was a mixture of acetonitrile (ACN), methanol (MeOH), water
and triethylamine (TEA), (56% ACN, 20% MeOH, 23.5% H2O, 0.5% TEA, v/v), adjusted to pH = 3.0 with
1.0 M hy
In this work, a simple and very sensitive cloud point extraction (CPE) process was developed for the determination of trace amount of metoclopramide hydrochloride (MTH) in pharmaceutical dosage forms. The method is based on the extraction of the azo-dye results from the coupling reaction of diazotized MTH with p-coumaric acid (p-CA) using nonionic surfactant (Triton X114). The extracted azo-dye in the surfactant rich phase was dissolved in ethanol and detected spectrophotometrically at λmax 480 nm. The reaction was studied using both batch and CPE methods (with and without extraction) and a simple comparison between the two methods was performed. The conditions that may be affected by the extraction process and the sensitivity of m
... Show MoreKA Hadi, AH Asma’a, IJONS, 2018 - Cited by 1
In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
As a result of the increase in wireless applications, this led to a spectrum problem, which was often a significant restriction. However, a wide bandwidth (more than two-thirds of the available) remains wasted due to inappropriate usage. As a consequence, the quality of the service of the system was impacted. This problem was resolved by using cognitive radio that provides opportunistic sharing or utilization of the spectrum. This paper analyzes the performance of the cognitive radio spectrum sensing algorithm for the energy detector, which implemented by using a MATLAB Mfile version (2018b). The signal to noise ratio SNR vs. Pd probability of detection for OFDM and SNR vs. BER with CP cyclic prefix with energy dete
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show More