In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this model is investigated by comparing the finite element numerical behavior with that predicted from experimental results of three pullout
specimens. Good agreement between the finite element solution and experimental results was obtained.
Total dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show MoreThe deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show MoreThe aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparis
... Show MoreIn this paper, we describe the cases of marriage and divorce in the city of Baghdad on both sides of Rusafa and Karkh, we collected the data in this research from the Supreme Judicial Council and used the cubic spline interpolation method to estimate the function that passing through given points as well as the extrapolation method which was applied for estimating the cases of marriage and divorce for the next year and comparison between Rusafa and Karkh by using the MATLAB program.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MoreIn this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.