Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorithms are proposed in this work with a discussion on the difference between them. These algorithms find the shortest route through finding the optimal rate between two nodes in the wireless networks but with bounded end-to-end delay. The Dijkstra-based algorithm is especially favorable in terms of processing time. We also present a comparison between our proposed single-constraint Dijkstra-based routing algorithm and the mesh routing algorithm (MRA) existing in the literature to clarify the merits of the former.
An experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we
Data of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreThis research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers a
... Show MoreIn this paper, three tool paths strategies; iso-planar, helical and adaptive have been implemented to investigates their effect on the mechanical properties of Brass 65-35 formed by single point incremental sheet metal forming process. To response this task, a fully digital integrated system from CAD modeling to finished part (CAD/CAM) for SPIF process has been developed in this paper.
The photo-micrographs shows an identical grain formation due to the plastic deformation of the incremental forming process, change in the grain shape and size was observed. It's found that the adaptive tool path play a significant role to increase the hardness of the formed specimen from (48 to 90 HV) and the grain texture of the formed specimen found a
Shumblan (SH) is one of the most undesirable aquatic plants widespread in the irrigation channels and water bodies. This work focuses on boosting the biogas potential of shumblan by co-digesting it with other types of wastes without employing any chemical or thermal pretreatments as done in previous studies. A maximum biogas recovery of 378 ml/g VS was reached using shumblan with cow manure as inoculum in a ratio of 1:1. The methane content of the biogas was 55%. Based on volatile solid (VS) and C/N ratios, biogas productions of 518, 434, and 580 ml/g VS were obtained when the shumblan was co-digested with food wastes (SH:F), paper wastes (SH:P), and green wastes (SH:G) respectively. No significant changes of methane contents were observ
... Show MoreThe present study aims to give some details about the normal anatomical and histological structure of the liver, pancreas and gall bladder in Cyprinus carpio Linnaeus, 1758 and Mesopotamichthys sharpeyi (Günther, 1874). Anatomical results revealed that the liver of C. carpio is a reddish-brown in color, located in the anterior part of abdominal cavity and dispersed between most of the intestines, which is divided into two lobes; while in M. sharpeyi the liver is light brown in color located in the anterior part of abdominal cavity and extends to the end of the intestinal tract with two lobs. The gallbladder situated in the right side of the liver in both species. Histological results in both species showed that the liver consists
... Show More