A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil was considered homogeneous anisotropic. For each case, the length of protection (L) and the volume of the superstructure (V) required to satisfy the factors of safety mentioned above were calculated. These data were used to obtain an artificial neural network model for estimating (L) and (V) for a given length of upstream cutoff (S1), length of downstream cutoff (S2), head difference (H), length of floor (B), depth of impervious layer (D) and degree of anisotropy (kx/ky).
A MatLAB code was written to perform a genetic algorithm optimization modeling using the obtained ANN model .The obtained optimum solution for some selected cases were compared with the Geo-studio modeling to find the length of protection required in the downstream side and volume required for superstructure. Values estimated were found comparable to the obtained values from the Genetic Algorithm model.
A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators
The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreBecause of its importance in the world, Middle East area is one of the competition areas between the major and great powers. Among those powers are Russia and United states of America. The competition between these two powers to control Syria is greatly clear since 2011. It is also one of the most important subject in the international politics. This importance comes from the importance of Russia and the United States of America besides importance of the Middle East. At the end of the cold war, United States of America maintained its role in the international system and became the only pole that dominated the international affairs while Russia tried to overcome the challenges inherited from the former Soviet Union, and it succeeded in th
... Show MoreThe Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreThe aim of this stud to isolate and identified of A. fumigatus from different sources and study the genetic diversity among these isolates by using RAPD and ISSR markers.Collected 20 samples from 7samples were isolated A. fumigatusisolates were characterized depending on its morphological, then extracted DNA from its.RAPD markersrandomly bandingwith sitesof genome more than ISSR markers where the primer OPN-07 achieved discriminative power (19.1) and 43 bands, while ISSR6 achieved discriminative power (17.1) with 32 bands.ISSR were more efficiency in specific binding then RAPD, ISSR primers has great a binding to production unique band, when 9 primers from 01 primers, ISSR9 was produce (5) unique bands, while RAPD markers was low ability
... Show MoreThe research aims at integrating the disclosure of the business models with the qualitative characteristics of accounting information. To achieve this, the elements of the business model should be identified and disclosed, and then study the possibility of integrating the disclosure of the business model with the qualitative characteristics of accounting information.
To achieve this objective, the research was based on the indicators of disclosure of the business model of the International Accounting Standards Board to measure the disclosure of the business model.
The research reached a number of conclusions, the most important of which were as follows:
Fi
... Show More