The present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness ratio, boundary conditions and lamination angle were investigated using classical laminated
plate theory (CLPT) and Finite element coded by ANSYS, in addition to the design parameters of
dynamic response such as load type with respect to time, x and y dimension and temperature value for
simply supported symmetric cross ply. The main conclusion was the natural frequency could increase
and decrease depending on the boundary conditions, thickness ratio, and lamination angle, the aspect
ratio of the plate. Present of temperature could increase dynamic response of plate also depending on
lamination angle, type of mechanical load and the value of temperature.
In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreNow-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of th
... Show MoreThis paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreIn this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreThe importance of vibrations in rotating rotors in engineering applications has been examined, as has the best approach to interpreting vibration data. The most extensively used analytical approaches for rotating shaft vibration analysis have been investigated. In this research, a detailed study was made of the Rayleigh and Dunkerley methods due to their importance in the special calculations to find the amplitude of vibrations in the rotation system. The multi-node method was used to calculate both Dunkerley's and Rayleigh's methods. An experimental platform was built to study the vibrations that occur in the rotating shafts, and the results were compared with theoretical calculations and with different distances of the bearings. It pro
... Show MoreThis paper deals with calculate stresses in Knee-Ankle-Foot-Orthosis as a result of the effect vibration during gait cycle for patient wearing KAFO .Experimental part included measurement interface pressure between KAFO and leg due to action muscles and body weigh on Orthosis. also measurement acceleration result from motion of defected leg by accelerometer .Results of Experimental part used input in theoretical part so as to calculate stresses result from applying pressure and acceleration on KAFO by engineering analysis program ANSYS 14.Resultes show stresses values in upper KAFO greater than lower KAFO that is back to muscles more effective in thigh part lead to recoding pressure higher than pressure in shank part.
Soils encounter cyclic loading conditions in situ, for example during the earthquakes and in the construction sequences of pavements. Investigations on the local scale displacements of the soil grain and their failure patterns under the cyclic loading conditions are relatively scarce in the literature. In this study, the local displacement fields of a dense sand layer interacting with a rigid footing under the plane-strain condition are examined using both experiments and simulations. Three commonly used types of cyclic loading conditions were applied on the footing. Digital particle image velocimetry (DPIV) is used to measure the local scale displacement fields in the soil, and to understand the ev
Incremental sheet forming (ISF) is a metal forming technology in which small incremental deformations determine the final shape. The sheet is deformed by a hemispherical tool that follows the required shape contour to deform the sheet into the desired geometry. In this study, single point incremental sheet forming (SPIF) has been implemented in dentistry to manufacture a denture plate using two types of stainless steel, 304 and 316L, with an initial thickness of 0.5mm and 0.8mm, respectively. Stainless steel was selected due to its biocompatibility and reasonable cost. A three-dimensional (3D) analysis procedure was conducted to evaluate the manufactured part's geometrical accuracy and thickness distribution. The obtained results confirm
... Show More