Preferred Language
Articles
/
joe-1979
MIXED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A HORIZONTAL CONCENTRIC AND ECCENTRIC CYLINDRICAL ANNULI

A numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer program (Fortran 90) was built to calculate the bulk Nusselt number (Nub) after reaching steady state condition for fluid Prandtl number fixed at 0.7 (air) with radius ratio ( =2.6), Rayleigh number (Ra=200), Reynolds number (Re=50) for both concentric and eccentric cylindrical annulus with different eccentricity ratios (ε=0, 0.25, 0.50, 0.75) and angular positions (φo=0o
, 45o , 90o , 135o , 180o ).
The results show a reasonable representation to the relation between Nusselt number and (ε, φo). Generally, Nub decreased with the increase in (ε and φo). Also, results show that the best thermal performance for the inner cylinder was at the angular
position (φo=0o ) for eccentricity ratio (ε=0.25), while the maximum reduction in the rate of heat transfer for the inner cylinder was at the angular position (φo=180o) for eccentricity ratio (ε=0.75).
Comparison of the result with the previous work shows a good agreement.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Simulation of Heat Storage and Heat Regeneration in Phase Change Material

The present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Isi Bilimi Ve Teknigi Dergisi/ Journal Of Thermal Science And Technology,
Enhancement of natural convection heat transfer of pin fin having perforated with inclination angle

Scopus (4)
Scopus
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of Mixed Convection in an Enclosure with a Cold Movable Top Wall and Hot Bottom Wall

 

Mixed convection heat transfer to air inside an enclosure is investigated experimentally. The bottom wall of the enclosure is maintained at higher temperature than that of the top wall which keeps in oscillation motion, whereas the left and right walls are well insulated. The differential temperature of the bottom and top walls changed several times in order to accurately characterize the temperature distribution over a considerable range of Richardson number. Adjustable aspect ratio box was built as a test rig to determine the effects of Richardson number and aspect ratio on the flow behavior of the air inside the enclosure. The flow fields and the average Nusselt number profiles were presented in this wo

... Show More
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Traveling Wave Cylindrical Induction Heating System

The paper deals with the traveling wave cylindrical heating systems. The analysis presented is analytical and a multi-layer model using cylindrical geometry is used to obtain the theoretical results. To validate the theoretical results, a practical model is constructed, tested and the results are compared with the theoretical ones. Comparison showed that the adopted analytical method is efficient in describing the performance of such induction heating systems.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Natural Convection into a Horizontal Annular Tube with Porous Medium Effects

In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed.

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 24 2019
Journal Name
Aerosol Science And Technology
Effect of axial eccentricity on the performance of a cylindrical differential mobility classifier

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Effect of radial magnetic field on peristaltic transport of Jeffrey fluid in curved channel with heat / mass transfer

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Case Studies In Thermal Engineering
The temperatures distributions of a single-disc clutches using heat partitioning and total heat generated approaches

View Publication
Scopus (35)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Thu Dec 04 2008
Journal Name
Journal Of Engineering
IMPROVEMENT OF SOIL USING GEOGRIDS TO RESIST ECCENTRIC LOADS.

This paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re

... Show More
Publication Date
Tue Apr 01 2014
Journal Name
International Communications In Heat And Mass Transfer
Determination of a time-dependent thermal diffusivity and free boundary in heat conduction

View Publication
Scopus (18)
Crossref (11)
Scopus Clarivate Crossref