A numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer program (Fortran 90) was built to calculate the bulk Nusselt number (Nub) after reaching steady state condition for fluid Prandtl number fixed at 0.7 (air) with radius ratio ( =2.6), Rayleigh number (Ra=200), Reynolds number (Re=50) for both concentric and eccentric cylindrical annulus with different eccentricity ratios (ε=0, 0.25, 0.50, 0.75) and angular positions (φo=0o
, 45o , 90o , 135o , 180o ).
The results show a reasonable representation to the relation between Nusselt number and (ε, φo). Generally, Nub decreased with the increase in (ε and φo). Also, results show that the best thermal performance for the inner cylinder was at the angular
position (φo=0o ) for eccentricity ratio (ε=0.25), while the maximum reduction in the rate of heat transfer for the inner cylinder was at the angular position (φo=180o) for eccentricity ratio (ε=0.75).
Comparison of the result with the previous work shows a good agreement.
The goal of this experimental study is to determine the effects of different parameters (Flow rate, cuttings density, cuttings size, and hole inclination degree) on hole cleaning efficiency. Freshwater was used as a drilling fluid in this experiment. The experiments were conducted by using flow loop consist of approximately 14 m (46 ft) long with transparent glass test section of 3m (9.84 ft.) long with 4 inches (101.6 mm) ID, the inner metal drill pipe with 2 inches (50.8 mm) OD settled with eccentric position positive 0.5. The results obtained from this study show that the hole cleanings efficiency become better with high flow rate (21 m3/hr) and it increase as the hole inclination angles increased from 60 to 90 degree due to dominated
... Show More
Mixed convection heat transfer to air inside an enclosure is investigated experimentally. The bottom wall of the enclosure is maintained at higher temperature than that of the top wall which keeps in oscillation motion, whereas the left and right walls are well insulated. The differential temperature of the bottom and top walls changed several times in order to accurately characterize the temperature distribution over a considerable range of Richardson number. Adjustable aspect ratio box was built as a test rig to determine the effects of Richardson number and aspect ratio on the flow behavior of the air inside the enclosure. The flow fields and the average Nusselt number profiles were presented in this wo
... Show MoreThe paper deals with the traveling wave cylindrical heating systems. The analysis presented is analytical and a multi-layer model using cylindrical geometry is used to obtain the theoretical results. To validate the theoretical results, a practical model is constructed, tested and the results are compared with the theoretical ones. Comparison showed that the adopted analytical method is efficient in describing the performance of such induction heating systems.
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
The simulation have been made for 3D flow structure and heat transfer with and without
longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 mode
... Show More