Preferred Language
Articles
/
joe-195
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning
...Show More Authors

This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In order to evaluate the proposed algorithm in term of finding the best solution, six benchmark test functions are used to make a comparison between AMOPSO and the standard MOPSO. The results show that the AMOPSO has a better ability to get away from local optimums with a quickest convergence than the MOPSO. The simulation results using Matlab 2014a, indicate that this methodology is extremely valuable for every robot in multi-robot framework to discover its own particular proper pa‌th from the start to the destination position with minimum distance and time.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 16 2022
Journal Name
Al-khwarizmi Engineering Journal
Path Planning and Obstacle Avoidance of a Mobile Robot based on GWO Algorithm
...Show More Authors

planning is among the most significant in the field of robotics research.  As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design The Modified Multi Practical Swarm Optimization To Enhance Fraud Detection
...Show More Authors

     Financial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Heuristic Approach for Solving Multi-objective Scheduling Problems
...Show More Authors

    In this paper, we studied the scheduling of  jobs on a single machine.  Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Inverse Kinematics Optimization for Humanoid Robotic Legs Based on Particle Swarm Optimization
...Show More Authors

Calculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Exact Methods for Solving Multi-Objective Problem on Single Machine Scheduling
...Show More Authors

     In this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Civil Engineering Journal
Time-Cost-Quality Trade-off Model for Optimal Pile Type Selection Using Discrete Particle Swarm Optimization Algorithm
...Show More Authors

The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t

... Show More
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Engineering
Pavement Maintenance Management Using Multi-objective Optimization: (Case Study: Wasit Governorate-Iraq)
...Show More Authors

View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Modified Bees Swarm Optimization Algorithm for Association Rules Mining
...Show More Authors

Mining association rules is a popular and well-studied method of data mining tasks whose primary aim is the discovers of the correlation among sets of items in the transactional databases. However, generating high- quality association rules in a reasonable time from a given database has been considered as an important and challenging problem, especially with the fast increasing in database's size. Many algorithms for association rules mining have been already proposed with promosing results. In this paper, a new association rules mining algorithm based on Bees Swarm Optimization metaheuristic named Modified Bees Swarm Optimization for Association Rules Mining (MBSO-ARM) algorithm is proposed. Results show that the proposed algorithm can

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 19 2025
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF