The main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones were investigated using optical microscope. The stir welding
experiments conducted that show the low carbon steel can be welded using (FSW) process with
maximum welding efficiency (100.02%) in terms of ultimate tensile strength using best result of
welding parameters (700 RPM, 25 mm/min, tool rotational speed and welding speed respectively and
0.2 mm plunging depth of welding tool) ,there is afirst time that we obtain the efficiency reach to
100.02 % to weld this type of low carbon steel by FSW. The corrosion resistance was measure which
is the new test on the welding by this way and we obtained different result from the result on
traditional welding processes and the result that obtained show the corrosion resistance for this
welding plate better than the base metal. Maximum temperature has been calculated numerically by
using the ANSYS program. The obtained peak temperature is 1102°C, A percentage minimum of the
melting point .
We demonstrate a behavior of laser pulse grows through fiber laser inside and output cavity with a soliton fiber laser based on the multi-wall carbon nanotube saturable absorber (SA), we investigate the effects of a saturable absorber parameter on the mode-locking of a realistic Erbium fiber ring laser. Generalized nonlinear Schrodinger equation including the nonlinear effects as gain dispersion, second anomalous group velocity dispersion (GVD), self phase modulation (SPM), and two photon absorption used to describe pulse evolution. An analytical method has been used to understand and to quantify the role of the SA parameter on the propagation dynamics of pulse laser. We compute the chirp, power, width and phase of the soliton for range
... Show MoreThe effect of fiber volume fraction of the carbon fiber on the thermal conductivity of the polymer composite material was studied. Different percentages of carbon fibers were used (5%, 10%, 15%, 20%, and 25%). Specimens were made in two groups for unsaturated polyester as a matrix and carbon fibers, first group has parallel arrangement of fibers and the second group has perpendicular arrangement of fibers on the thermal flow, Lee's disk method was used for testing the specimens. This study showed that the values of the of thermal conductivity of the specimens when the fibers arranged in parallel direction was higher than that when the fibers arranged in the perpendicular direction
 
... Show MoreMoisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c
... Show MoreA new light-weight nanocarbon prepared by spray-drying method to obtain particle size is 21.7 nm based of polylactic acid biodegradable film in antistatic packaging .Bio carbon (biochar) is obtained from plants and soils to naturally absorb and store carbon dioxide from the atmosphere . Therefor it has been used to support biodegradable polylactic acid (PLA) with to obtain 100% recyclable material.
Using plasticizer thymol of polylactic acid and biochar (bio carbon) as composites were prepared by a solution casting method with (0.5-10)wt% biochar. The composites characterized by FTIR, electrical conductivity, mechanical properties , contact angle and Colar and Brightness . Results show th
... Show MoreThe ongoing research to improve the clinical outcome of titanium implants has resulted in the implementation of multiple approaches to deliver osteogenic growth factors accelerating and sustaining osseointegration. Here we show the presentation of human bone morphogenetic protein 7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate) (PEA). We have previously shown that PEA promotes fibronectin organization into nanonetworks exposing integrin- and growth-factor-binding domains, allowing a synergistic interaction at the integrin/growth factor receptor level. Here, titanium discs were coated with PEA and fibronectin and then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells were used to investigate cellular resp
... Show MoreAn analytical model in the form of a hyperbolic function has been suggested for the axial potential distribution of an electrostatic einzel lens. With the aid of this hyperbolic model the relative optical parameters have been computed and investigated in detail as a function of the electrodes voltage ratio for various trajectories of an accelerated charged-particles beam. The electrodes voltage ratio covered a wide range where the lens may be operated at accelerating and decelerating modes. The results have shown that the proposed hyperbolic field has the advantages of producing low aberrations under various magnification conditions and operational modes. The electrodes profile and their three-dimensional diagram have been determined whi
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
The buildup factor was measured after irradiating Iraq carbon black powder using each of and sources respectively, using mixing ratios 40% & 50% for thickness range . The results showed that the buildup factor depends on energy and has limited dependence on the mixing ratio. The QIFT program succeeded accenting for the experimental results even for expected values more than 4 m.f.p outside the thickness range.