Preferred Language
Articles
/
joe-1950
An Improved Adaptive Spiral Dynamic Algorithm for Global Optimization
...Show More Authors

This paper proposes a new strategy to enhance the performance and accuracy of the Spiral dynamic algorithm (SDA) for use in solving real-world problems by hybridizing the SDA with the Bacterial Foraging optimization algorithm (BFA). The dynamic step size of SDA makes it a useful exploitation approach. However, it has limited exploration throughout the diversification phase, which results in getting trapped at local optima. The optimal initialization position for the SDA algorithm has been determined with the help of the chemotactic strategy of the BFA optimization algorithm, which has been utilized to improve the exploration approach of the SDA. The proposed Hybrid Adaptive Spiral Dynamic Bacterial Foraging (HASDBF) algorithm is designed so that the chemotaxis phase of bacteria represents the exploration part of the search operation. In contrast, the SDA represents the exploitation part.

Additionally, to improve search operation efficiency, the spiral model's radius and angular displacement are adaptively set according to a linear correlation concerning the fitness value. An additional phase, the elimination and dispersal phase, is obtained from BFA and added to the end of the SDA. This phase aims to improve the algorithm's final solution's accuracy by enhancing the algorithm's search strategy and performance. Simulation tests are run on unimodal and multimodal standard benchmark functions to verify the proposed algorithm. The proposed algorithm significantly outperforms SDA and Adaptive SDA (ASDA) algorithms regarding fitness value and accuracy.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optimum Design of Power System Stabilizer based on Improved Ant Colony Optimization Algorithm
...Show More Authors

This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.

 

View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Path Planning of an Autonomous Mobile Robot using Enhanced Bacterial Foraging Optimization Algorithm
...Show More Authors

This paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Computer Networks
An improved multi-objective evolutionary algorithm for detecting communities in complex networks with graphlet measure
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Tue May 28 2019
Journal Name
Al-khwarizmi Engineering Journal
Heuristic D* Algorithm Based on Particle Swarm Optimization for Path Planning of Two-Link Robot Arm in Dynamic Environment
...Show More Authors

 Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved.  In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Solving Adaptive Distributed Routing Algorithm Using Crow Search Algorithm
...Show More Authors

    Crow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the proble

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Skin Detection using Improved ID3 Algorithm
...Show More Authors

Skin detection is classification the pixels of the image into two types of pixels skin and non-skin. Whereas, skin color affected by many issues like various races of people, various ages of people gender type. Some previous researchers attempted to solve these issues by applying a threshold that depends on certain ranges of skin colors. Despite, it is fast and simple implementation, it does not give a high detection for distinguishing all colors of the skin of people. In this paper suggests improved ID3 (Iterative Dichotomiser) to enhance the performance of skin detection. Three color spaces have been used a dataset of RGB obtained from machine learning repository, the University of California Irvine (UCI), RGB color space, HSV color sp

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem
...Show More Authors

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
A Novel Gravity ‎Optimization Algorithm for Extractive Arabic Text Summarization
...Show More Authors

 

An automatic text summarization system mimics how humans summarize by picking the most ‎significant sentences in a source text. However, the complexities of the Arabic language have become ‎challenging to obtain information quickly and effectively. The main disadvantage of the ‎traditional approaches is that they are strictly constrained (especially for the Arabic language) by the ‎accuracy of sentence feature ‎functions, weighting schemes, ‎and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha

... Show More
View Publication Preview PDF
Scopus Crossref