Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression algorithms. In this research, the design of SEA based on different speech models (Laplacian model or Gaussian model) has been implemented using two types of discrete transforms, which are Discrete Tchebichef Transform and Discrete Tchebichef-Krawtchouk Transforms. The proposed estimator consists of dual stages of a wiener filter that can effectively estimate the clean speech signal. The evaluation measures' results show the proposed SEA's ability to enhance the noisy speech signal based on a comparison with other types of speech models and a self-comparison based on different types and levels of noise. The presented algorithm's improvements ratio regarding the average SNRseq are 1.96, 2.12, and 2.03 for Buccaneer, White, and Pink noise, respectively.
The Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key gene
... Show MoreIn this paper an algorithm for Steganography using DCT for cover image and DWT for hidden image with an embedding order key is proposed. For more security and complexity the cover image convert from RGB to YIQ, Y plane is used and divided into four equally parts and then converted to DCT domain. The four coefficient of the DWT of the hidden image are embedded into each part of cover DCT, the embedding order based on the order key of which is stored with cover in a database table in both the sender and receiver sender. Experimental results show that the proposed algorithm gets successful hiding information into the cover image. We use Microsoft Office Access 2003 database as DBMS, the hiding, extracting algo
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreSecure information transmission over the internet is becoming an important requirement in data communication. These days, authenticity, secrecy, and confidentiality are the most important concerns in securing data communication. For that reason, information hiding methods are used, such as Cryptography, Steganography and Watermarking methods, to secure data transmission, where cryptography method is used to encrypt the information in an unreadable form. At the same time, steganography covers the information within images, audio or video. Finally, watermarking is used to protect information from intruders. This paper proposed a new cryptography method by using thre
... Show MoreMerging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreVol. 6, Issue 1 (2025)
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreImage retrieval is an active research area in image processing, pattern recognition, and
computer vision. In this proposed method, there are two techniques to extract the feature
vector, the first one is applying the transformed algorithm on the whole image and the second
is to divide the image into four blocks and then applying the transform algorithm on each part
of the image. In each technique there are three transform algorithm that have been applied
(DCT, Walsh Transform, and Kekre’s Wavelet Transform) then finding the similarity and
indexing the images, useing the correlation between feature vector of the query image and
images in database. The retrieved method depends on higher indexing number. <