Preferred Language
Articles
/
joe-1936
Numerical Assessment of Pipe Pile Axial Response under Seismic Excitation
...Show More Authors

In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb model was used to describe the surrounding soil layers. When low acceleration was introduced in the early stages, positive frictional resistance (i.e., in dry soil, the FR was about 1.61, 1.98, and 0.9 Mpa under Kobe, Halabja, and Ali Algharbi earthquakes, respectively) was recorded. However, as the acceleration increased (from PGA = 0.1 g and 0.102 g to PGA = 0.82 g), the resistance reduced and eventually turned negative. In this study, both internal and exterior frictional resistance were measured. It was found that the soil state and acceleration intensity both have a noticeable effect on the failure process, i.e., the maximum plug soil resistance decreased by about 55% by changing the soil condition from a dry to a saturated state under the recorded data of the Kobe earthquake. A rough estimation of the long-term settlements at the shaken soil surface is meant to be included in the results of this research.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector
...Show More Authors

A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherw

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 16 2021
Journal Name
Iraqi Journal Of Physics
Numerical analysis of molecules intersystem crossing effect on a passively Q- switched laser pulse characteristics
...Show More Authors

The effect of molecules intersystem crossing (Kisc) on characteristics
(energy and duration) of a Passive Q- switched Laser Pulse has been
studied by mathematical description (rate equations model) for
temporal performance of which was used as a saturable absorber
material (passive switch) with laser. The study shows that the energy
and duration pulse are decreasing while the molecules intersystem
crossing into saturable absorber energy levels is increasing.

View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
NUMERICAL TAXONOMY OF GENUS FICUS L. 1753 (MORACEAE), WITH ADDITION NEW RECORD SPECIES TO EGYPT
...Show More Authors

The taxonomy of Ficus L., 1753 species is confusing because of the intense morphological variability and the ambiguity of the taxa. This study handled 36 macro-morphological characteristics to clarify the taxonomic identity of the taxa. The study revealed that Ficus is represented in the Egyptian gardens with forty-one taxa; 33 species, 4 subspecies and 4 varieties, and classified into five subgenera: Ficus Corner, 1960; Terega Raf., 1838; Sycomorus Raf., 1838; Synoecia (Miq.) Miq., 1867, and Spherosuke Raf.,1838; out of them seven were misidentified. Amongst, four new Ficus taxa were recently introduced to Egypt namely: F. lingua subsp. lingua Warb. ex De Wild. & T. Durand, 1901; F. pumila L., 1753; F. rumphii Blume, 1825, and F. su

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Evergreen
Development, Validation, and Performance Evaluation of An Air-Driven Free-Piston Linear Expander Numerical Model
...Show More Authors

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Jan 11 2025
Journal Name
Al-khwarizmi Engineering Journal
Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector
...Show More Authors

Publication Date
Mon Oct 01 2012
Journal Name
Computers & Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

View Publication
Crossref (19)
Crossref
Publication Date
Fri Dec 15 2023
Journal Name
Iraqi Journal Of Laser
Numerical Simulation of Metasurface Grating to Function as Polarization Modulator in Quantum Key Distribution Systems
...Show More Authors

Polarization modulation plays an important role in polarization encoding in quantum key distribution. By using polarization modulation, quantum key distribution systems become more compact and more vulnerable as one laser source is used instead of using multiple laser sources that may cause side-channel attacks. Metasurfaces with their exceptional optical properties have led to the development of versatile ultrathin optical devices. They are made up of planar arrays of resonant or nearly resonant subwavelength pieces and provide complete control over reflected and transmitted electromagnetic waves opening several possibilities for the development of innovative optical components. In this work, the Si nanowire metasurface grating polarize

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Numerical Simulation of Gas Lift Optimization Using Artificial Intelligence for a Middle Eastern Oil Field
...Show More Authors
Abstract<p>Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit</p> ... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improved High order Euler Method for Numerical Solution of Initial value Time- Lag Differential Equations
...Show More Authors

The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.

View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
A New Mixed Nonpolynomial Spline Method for the Numerical Solutions of Time Fractional Bioheat Equation
...Show More Authors

In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.

View Publication Preview PDF
Scopus (1)
Scopus Crossref