Preferred Language
Articles
/
joe-1936
Numerical Assessment of Pipe Pile Axial Response under Seismic Excitation
...Show More Authors

In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb model was used to describe the surrounding soil layers. When low acceleration was introduced in the early stages, positive frictional resistance (i.e., in dry soil, the FR was about 1.61, 1.98, and 0.9 Mpa under Kobe, Halabja, and Ali Algharbi earthquakes, respectively) was recorded. However, as the acceleration increased (from PGA = 0.1 g and 0.102 g to PGA = 0.82 g), the resistance reduced and eventually turned negative. In this study, both internal and exterior frictional resistance were measured. It was found that the soil state and acceleration intensity both have a noticeable effect on the failure process, i.e., the maximum plug soil resistance decreased by about 55% by changing the soil condition from a dry to a saturated state under the recorded data of the Kobe earthquake. A rough estimation of the long-term settlements at the shaken soil surface is meant to be included in the results of this research.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Seismic Analysis of Floating Stone Columns in Soft Clayey Soil
...Show More Authors

The response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 an

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
The Scientific World Journal
Mathematical Modeling and Experimental Investigation of the Dynamic Response for an Annular Circular Plate Made of Glass/Polyester Composite Under Different Boundary Conditions
...Show More Authors

Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f

... Show More
View Publication
Scopus Crossref
Publication Date
Wed May 26 2021
Journal Name
Energies
Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances
...Show More Authors

Rotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, and other rotational operational principal including gears. The work emphasises the discussion of different types of excitations elements, such as mass weight, magnetic force, gravity force, centrifugal force, gears teeth, and impact force, to show their effect

... Show More
View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied.                              &

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 02 2015
Journal Name
Journal Of Engineering, University Of Baghdad
'Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

View Publication
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL INVESTIGATION OF INDIVIDUAL EVACUATED TUBE HEAT PIPE SOLAR WATER HEATING SYSTEMS
...Show More Authors

lar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Bag

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 31 2014
Journal Name
Al-khwarizmi Engineering Journal
Energy Saving of Heat Gain by Using Buried Pipe Inside a Roof
...Show More Authors

Abstract

    This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season.     The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 24 2015
Journal Name
Plos One
Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems
...Show More Authors

View Publication
Scopus (31)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Experimental Investigation of Vibration Stress Relief of A106 Steel Pipe T-Welded Fittings
...Show More Authors

This research examines the use of vibratory treatments to reduce residual stresses in small welded parts. In this experimental investigation, a post weld vibration treatment was applied to T- A106 steel pipe fitting specimens to study the effect of the treatment on the residual stress and the hardness of the material. The vibratory stress relief treatment was carried out at different vibration frequency. The results have demonstrated that post-weld vibratory stress relief of small size fittings is possible and residual stress may be relieved, and the treatment may be an alternative method for heat treatment especially when unchange in dimensions and material stability are required.

 

View Publication Preview PDF
Crossref