Building Information Modeling (BIM) is extensively used in the construction industry due to its benefits throughout the Project Life Cycle (PLC). BIM can simulate buildings throughout PLC, detect and resolve problems, and improve building visualization that contributes to the representation of actual project details in the construction stage. BIM contributes to project management promotion by detecting problems that lead to conflicts, cost overruns, and time delays. This work aims to implement an effective BIM for the Iraqi construction projects’ life cycle. The methodology used is a literature review to collect the most important factors contributing to the success of BIM implementation, interview the team of the Central Bank of Iraq (CBI) building, and strive to improve the BEP of the CBI building. However, previous studies indicate collaborative work and communications enhance effective BIM implementation, which can improve BIM use by applying a BEP and an AEC (UK) BIM protocol that leads to positive BIM impact. BEP comprises important information and goals related to the intended project, including the BIM collaborative process (process map), information exchange requirements, BIM data management, BIM model management, and quality control, which are considered essential for enhancing BIM collaboration during PLC. This paper concludes that implementing BIM effectively requires overcoming obstacles faced by Iraqi construction projects. Effective BIM implementation requires improving collaboration and communication throughout the construction process, which could be achieved by depending on the BIM Execution Planning Guide(BEP Guide) and the AEC (UK) BIM Protocol 2012 V2.0
Recent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreBreast cancer constitutes about one fourth of the registered cancer cases among the Iraqi population (1)
and it is the leading cause of death among Iraqi women (2)
. Each year more women are exposed to the vicious
ramifications of this disease which include death if left unmanaged or the negative sequels that they would
experience, cosmetically and psychologically, after exposure to radical mastectomy.
The World Health Organization (WHO) documented that early detection and screening, when coped
with adequate therapy, could offer a reduction in breast cancer mortality; displaying that the low survival rates
in less developed countries, including Iraq, is mainly attributed to the lack of early detection programs couple
Due to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modulari
... Show MoreIn the present work, different remote sensing techniques have been used to analyze remote sensing data spectrally using ENVI software. The majority of algorithms used in the Spectral Processing can be organized as target detection, change detection and classification. In this paper several methods of target detection have been studied such as matched filter and constrained energy minimization.
The water body mapping have been obtained and the results showed changes on the study area through the period 1995-2000. Also the results that obtained from applying constrained energy minimization were more accurate than other method comparing with the real situation.
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreThis research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-
... Show MoreIn the task of detecting intrinsic plagiarism, the cases where reference corpus is absent are to be dealt with. This task is entirely based on inconsistencies within a given document. Detection of internal plagiarism has been considered as a classification problem. It can be estimated through taking into consideration self-based information from a given document.
The core contribution of the work proposed in this paper is associated with the document representation. Wherein, the document, also, the disjoint segments generated from it, have been represented as weight vectors demonstrating their main content. Where, for each element in these vectors, its average weight has been considered instead of its frequency.
Th
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreAl-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized Difference Vegetation Index (NDVI), Geographic Information Systems(GIS), and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, th
... Show More