Interface bonding between asphalt layers has been a topic of international investigation over the last thirty years. In this condition, a number of researchers have made their own techniques and used them to examine the characteristics of pavement interfaces. It is obvious that test findings won't always be comparable to the lack of a globally standard methodology for interface bonding. Also, several kinds of research have shown that factors like temperature, loading conditions, materials, and others have an impact on surface qualities. This study aims to solve this problem by thoroughly investigating interface bond testing that might serve as a basis for a uniform strategy. First, a general explanation of how the bonding strength function works and how it affects the pavement is given. The construction of various setups is then examined, and their functions are contrasted, followed by an explanation of various interface bond test procedures according to loading situations. A concept for a systematic approach to a standard assessment of asphalt interface is proposed, based on previous findings.
<p>The popularity, great influence and huge importance made wireless indoor localization has a unique touch, as well its wide successful on positioning and tracking systems for both human and assists also contributing to take the lead from outdoor systems in the scope of the recent research works. In this work, we will attempt to provide a survey of the existing indoor positioning solutions and attempt to classify different its techniques and systems. Five typical location predication approaches (triangulation, fingerprinting, proximity, vision analysis and trilateration) are considered here in order to analysis and provide the reader a review of the recent advances in wireless indoor localization techniques and systems to hav
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreSchiff bases (SBs) represent multipurpose ligands that can be prepared from the concentration of prime amines with carbonyl clusters. Creation of SB transition metal compounds via as ligands has opportunity of attaining coordination complexes of abnormal arrangement and stability. These transition metal compounds have extraordinary attention as a consequence of their dynamic portion in metalloenzymes and as biomimetic prototypical complexes as a result of their proximity to usual enzymes and proteins. These complexes are imperative in medicinal disciplines owing to their widespread range of biological actions. They mostly exhibit organic actions involving antifungal, antibacterial, antitumor, antidiabetic, herbicidal, antiproliferative, ant
... Show MoreReview of multidrug sensitivity and resistance in enterococcus