Preferred Language
Articles
/
joe-1913
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed classification model is divided into three major phases, including pre-processing, training the Resnet-50 network, and classification with evaluation. In the first phase, pre-processing techniques are applied to the APTOS2019 fundus images dataset to find the best features and highlight some fine details of these images. The resnet-50 network was trained in the second phase using the training set and saved the best model obtained that gives high accuracy during the training process. Finally, this saved model has been implemented on the testing dataset for classification DR grades. The proposed model shows good and best classification performance, which was obtained with an accuracy of 98.3%, a precision of 98.4%, an F1-Score of 98.5 % and the recall of 98.4%.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Al-kindy College Medical Journal
The Surgical outcomes of fundus-first technique in lowering the rate of bile duct injuries and bleeding during open cholecystectomy that facing intraoperative difficulties: A single-center prospective study: The surgical outcomes of open fundus-first cholecystectomy technique.
...Show More Authors

Background: The problem of difficult gallbladder is not clearly defined and associated with real missing of therapeutic approaches that decreased morbidity. Moreover, the difficult gallbladder was reported as a contributing risk factor for biliary injury due to raised difficulty in surgical dissection within Calot’s triangle. The aim of this study is to determine the surgical outcomes of the open fundus-first cholecystectomy in lowering the rate of lethal intraoperative risks.

Subjects and Methods: Our prospective study conducted during the period of January 2019 to December 2022 at Ibn Sina specialized hospital, Khartoum, Sudan, for two hundred and fifty-three patients underw

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Dec 03 2015
Journal Name
Iraqi Journal Of Science
New multispectral images classification method based on MSR and Skewness implementing on various sensor scenes
...Show More Authors

Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (22)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Engineering And Sustainable Development
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Wed Sep 16 2020
Journal Name
Al-kindy College Medical Journal
STUDY OF TINEA PEDIS IN DIABETIC VERSUS NON-DIABETIC PATIENTS
...Show More Authors

Background : The aim of this work is to study the clinical features and causative fungi of tinea pedis in diabetic and non-diabetic patients. Result : Tinea pedis was estimated to be the second most common skin disease in the United States, after acne. Up to 15% of the U.S., population may have tinea pedis. Across Europe and East Asia, prevalence rates reach 20 %. Methods: The Complete history taking regarding: age, sex, occupation, residency, history of diabetes and diabetic profile (fasting blood sugar and post prandial).and Clinical examination of the feet Aim of the study : The aim of this work was to study the clinical features and causative fungi of tinea pedis in diabetic and non-diabetic patients Conclusion : Tinea pedis is more

... Show More
View Publication Preview PDF
Crossref (1)
Crossref