Universities are among spaces where it's important to ensure thermal comfort in indoor spaces, improving the occupants' well-being and productivity. The problem of the research was to study appropriate glazing systems for the spaces of the University of Baghdad because glazing systems are one of the most important elements of the indoor environments, and it has a major impact on the thermal performance of buildings. Glass is one of the most seasoned materials that are most utilized in the design. Since it is a diaphanous material, it allows sunlight to enter the building, increasing the space's temperature, cooling loads, and energy consumption in summer. The research followed the experimental method by studying and testing(conventional, advanced, and photovoltaic glazing)by Revit and Onyx Solar analysis in the Architectural Department classes to find the appropriate type of glazing in the spaces of hot, dry areas. The results showed that advanced glazing is the best by reducing the cooling loads andincreasingthermal performance quality. Photovoltaic glazing showed its efficiency in filling part of the electrical energy needs within the spaces of the Architectural department.
In the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreWater is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul
... Show MoreWe have theoretically investigated the in-plane lattice thermal conductivity of Zn4Sb3single quantum well structure taking into account spatial confinement of phonons. The calculations were carried out for free-surface quantum wells with thickness 8.5nm in the room temperature. We show that the lattice thermal conductivity is a significant reduce. The reduction is mostly due to the drop in the average group velocity caused by the spatial confinement of acoustic phonons and the corresponding increase in phonon relaxation rates. The predicted decrease is important for the anticipated applications of Zn4Sb3 nanostructure materials for room-temperature thermoelectric devices. Our theoretical results are in a good agreement with available exp
... Show MoreSome mechanical and thermal properties of mullite samples prepared by mixing different phases of alumina and silica powders have been studied according to ASTM methods the cold crushing strength of the sintcred bodies.With different porosity, at room temperature was in the range(18-54)Mpa
In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreThe thermal properties of four nematogenic Schiff’s bases, n-butyl-to-n-heptyl of bis (4-n-alkyloxybenzylidine)-2,3,5.6- tetramethyl-1, 4-phenylenediamine, have been studied. The transition temperatures and enthalpies of transition were examined by differential scanning calorimeter (DSC). Several correlations were carried out; those included the relations between transition temperatures, enthalpies and entropies of transition with increasing the
number of carbon atoms in the terminal alkyl chains. In addition, new regular relations were found between the ratio of the enthalpies and of the entropies, for noematic-isotropic transition and crystal-isotropic transition ( ΔΗÎ-i/AHC-I, ΔS
In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i
... Show MoreTo enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm−1 corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm−1 is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm−1 corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm−1 and 2862 cm−1 ar