The hydraulic conditions of a flow previously proved to be changed when placing large-scale geometric roughness elements on the bed of an open channel. These elements impose more resistance to the flow. The geometry of the roughness elements, the numbers used, and the configuration are parameters that can affect the hydraulic flow characteristics. The target is to use inclined block elements to control the salt wedge propagation pointed in most estuaries to prevent its negative effects. The Computational Fluid Dynamics CFD Software was used to simulate the two-phase flow in an estuary model. In this model, the used block elements are 2 cm by 3 cm cross-sections with an inclined face in the flow direction, with a length of their sides 2 and 3 cm. These elements were placed with a constant spacing in two rows at a distance from two sides of the bed of the channel model. Six simulation runs were conducted with two different discharges and three different inclinations of the centerline of the element concerning the flow direction. The applied discharges are 30 and 45.3 l/min, and the inclination of roughness elements are 15o, 30o, and 45o. The spacing between elements in each row is kept at 3cm. The results showed that when no roughness elements were used, the propagation of the salt wedge extended to 3.9m and 3.1m at a discharge of 30 l/min and 45.31/min, respectively. The propagation of the salt wedge was reduced when using the inclined blocks roughness element. This reduction depends on the applied discharge and the angle of inclination. At the minimum applied discharge of 30 l/min, the propagation of the salt wedge was reduced by 74% at 45o inclination. In contrast, it was 69% at 30o and 64% at 15o inclination at the same discharge. When the discharge is 45.3 l/min, the propagation of the salt wedge was reduced by 85% at 45o inclinations of roughness, 84% at 30o. It was 70% at 15o inclinations. The roughness elements improve the flow turbulence that disperses and slows the salt wedge propagation beneath the fresh water.
With the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardw
... Show MoreToxic dyes are commonly discharged into waste waters and dyes are extensively used in the textile industry so it is necessary to find out efficient and eco-friendly method for treating waste waters resulting from industrial effluences. To achieve this aim the fungus Trichoderma sp. is employed into two lines: first line was self – immobilized fungal pellets in (Czapek – Dox medium) to adsorbs two dyes crystal violet, congo red by concentrations 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 mg/L to both dyes, PH 2, room temperature with shaker in ( hrs.2,hrs.4,hrs.24) , by Uv- Visible spectrum . the removal efficiency of 0.05 mg/L crystal violet by Trichoderma sp was 96%. but there was no remova
... Show MoreFinding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.
Automatic speaker recognition may achieve remarkable performance in matched training and test conditions. Conversely, results drop significantly in incompatible noisy conditions. Furthermore, feature extraction significantly affects performance. Mel-frequency cepstral coefficients MFCCs are most commonly used in this field of study. The literature has reported that the conditions for training and testing are highly correlated. Taken together, these facts support strong recommendations for using MFCC features in similar environmental conditions (train/test) for speaker recognition. However, with noise and reverberation present, MFCC performance is not reliable. To address this, we propose a new feature 'entrocy' for accurate and robu
... Show MoreNowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
The present study aims at assessing the status of heavy metals such as nickel, cadmium and lead to pollute some areas of Baghdad city. In this study the spectral absorption device and the program ArcGIS 10.2 will using. The soil samples were taken from five different locations in Baghdad, including Ameriya, Kadhimiya, Palestine Street, Jadiriyah and Taji for the 5cm depth layer on both sides of the road. This work on soil samples has been completed in two :phases 1 - Preparation of samples: For the purpose of converting solid material into a extract containing elements in the form of single ions can be estimated by the device 2-Determination of elements: Samples prepared to the device
The density functional B3LYP is used to investigate the effect of decorating the silver (Ag) atom on the sensing capability of an AlN nanotube (AlN-NT) in detecting thiophosgene (TP). There is a weak interaction between the pristine AlN-NT and TP with the sensing response (SR) of approximately 9.4. Decoration of the Ag atom into the structure of AlN-NT causes the adsorption energy of TP to decrease from − 6.2 to − 22.5 kcal/mol. Also, the corresponding SR increases significantly to 100.5. Moreover, the recovery time when TP is desorbed from the surface of the Ag-decorated AlN-NT (Ag@AlN-NT) is short, i.e., 24.9 s. The results show that Ag@AlN-NT can selectively detect TP among other gases, such as N2, O2, CO2, CO, and H2O.
Transportation networks impact millions of people daily. Their efficiency immediately affects travel time, safety, and environmental sustainability. Unfortunately, various issues hinder the expected performance and efficiency of these networks. Traffic congestion is an up-to-date issue in the urban environment. Fuel consumption is high because travel time has increased, which has a passive environmental impact. Extensive research has been conducted to progress the intelligent transportation systems installed on communication networks and information to treat this congestion. However, there is a significant amount of affront residue in combining real-time data, estimation analytics, and 5G abilities effectively. This paper offers a n
... Show MoreAs COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
Motivation is one of the most important factors that influence students learning and has a great effect on their success and achievement. For this reason, in this paper, the researcher is going to investigate the motivational teaching strategies used by EFL Iraqi school teachers. To achieve the aim of the study, the researcher adapted a questionnaire with some changes and modification’s. This questionnaire with five point scale (always, often, sometimes, rarely and never). To achieve face validity, the questionnaire items are given to a jury of experts. Alpha Cronbach formula is used to achieve the questionnaire reliability. After that, the questionnaire was applied on a sample of 38 teachers during the academic year 2019-2020. Th
... Show More