Preferred Language
Articles
/
joe-188
Nonlinear Behavior of Self -Compacting Reinforced Concrete Two-Way Slabs with Central Square Opening under Uniformly Distributed Loads
...Show More Authors

This research is carried out to investigate the behavior of self-compacting concrete (SCC) two-way slabs with central square opening under uniformly distributed loads. The experimental part of this research is based on casting and testing six SCC simply supported square slabs having the same dimentions and reinforcement. One of these slabs was cast without opening as a control slab. While, the other five slabs having opening ratios (OR) of 2.78%, 6.25%, 11.11%, 17.36% and 25.00%. From the experimental results it is found that the maximum percentage decrease in cracking and ultimate uniform loads were 31.82% and 12.17% compared to control slab for opening ratios (OR) of 11.11% and 6.25% respectively. Also the results showed that as OR is increased from 0.00% to 11.11%, a signifacant increase in deflection was occured. While the increase of OR from 11.11% to 25.00%, a slighlty decrease in deflection was occured compared to control slab within the entire range of loading starting from first cracking load up to ultimate load. The theoretical part of this research is adopted for both simply supported and clamped ends square slabs according to yield line theory. For simply supported slabs, the results showed a decrease in ultimate uniform loads for OR ranging between 0.00% and 25.00%. While beyond this value, an increase in the ultimate uniform load is occured. In addition, it is found that as OR was increased; the total ultimate load is decreased. Also from the theoretical analysis for clamped end slabs it is found that as OR was increased, both the ultimate uniform load and the total ultimate load were increased.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Civil Engineering Research
Distribution Factor of Curved I-Girder Bridges under Iraqi Standard Bridge Live Loads
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Apr 02 2020
Journal Name
Kufa Journal Of Engineering
PERFORMANCE OF SKIRTED CIRCULAR SHALLOW FOOTINGS RESTING ON SANDY SOIL UNDER INCLINED LOADS
...Show More Authors

Experimental tests were conducted to study the behavior of skirted foundations rested on dry medium sandy soil subjected to vertical and inclined loads. To achieve this goal, a small-scale physical model was designed and performed which contained an aluminum circular footing (100 mm) in diameter and (10 mm) in thickness and skirts with different heights, local medium poorly graded dry sand is placed in a steel soil container (2 mm) thick with internal dimensions (1000 mm x 1000 mm in cross section and 800 mm in height). The main objective of this study was to evaluate the response of skirt attached to the foundation at different skirt (L/D) ratios (0.0, 0.5, 1.0 and 1.5) and is subjected to point load at different angles of inclinat

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Influence of Fire-Flame Duration and Temperature on the Behavior of Reinforced Concrete Beam Containing Water Absorption Polymer Sphere; Numerical Investigation
...Show More Authors

One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t

... Show More
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Influence of Fire-Flame Duration and Temperature on the Behavior of Reinforced Concrete Beam Containing Water Absorption Polymer Sphere; Numerical Investigation
...Show More Authors

One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t

... Show More
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Influence of Fire-Flame Duration and Temperature on the Behavior of Reinforced Concrete Beam Containing Water Absorption Polymer Sphere; Numerical Investigation
...Show More Authors

One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Buckling Behavior of Aluminum Alloy Thin-Walled Beam with Holes under Compression Loading
...Show More Authors

Thin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Study the nonlinear behavior of MWCNTs and ZnO/Se/MWCNTs
...Show More Authors

MWCNTs and hybrid nanocomposite ZnO/Se/MWCNTs have been prepared via Solvothermal technique using Parr reactor at the temperature 180°C and SeCl2 as a catalyst. The obtained MWCNTs and ZnO/Se/MWCNTs are investigated using the FE-SEM, XRD, UV-VIS Spectroscopy and Z-Scan. The novelty of this research is studying the nonlinear optical properties for these prepared materials and the results exhibit that the thickness of the deposited film for hybrid nanocomposite ZnO/Se/MWCNTs is increased, which in turn, increase the nonlinear phase shift of the laser beam compared with the MWCNTs.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Engineering
The Behavior of Bond Strength between Rebar and Concrete in Rubberized Concrete : -
...Show More Authors

Through an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Effect of Using Grids On the Behaviour of Portland Limestone Cement Self Compacted Concrete.
...Show More Authors

The civil engineering field currently focus on sustainable development. It is important to develop new sustainable and economic generations of concrete, using eco-friendly materials in the construction industry with a fair amount of costs and minimizing the impact upon the environment by reducing CO2 emissions from the cement industry as a whole while still obtaining high cement quality and strength. The main objective of this research is to clarify the mechanical behavior and ability to use Portland limestone cement in producing self compacted concrete, due to the beneficious effec of the limestone cement economically and enviromently. The research investigates the effect of using steel and polymer meshs as reinforcement, where the results

... Show More
Publication Date
Wed Jun 02 2010
Journal Name
Journal Of Engineering
Bearing capacity of square footing on geogrid reinforced loose sand to resist eccentric load
...Show More Authors

This research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively