Priority of road maintenance can be viewed as a process influenced by decision-makers with varying decision-making power. Each decision-maker may have their view and judgment depending on their function and responsibilities. Therefore, determining the priority of road maintenance can be thought of as a process of MCDM. Regarding the priority of road maintenance, this is a difficult MCDM problem involving uncertainty, qualitative criteria, and possible causal relationships between choice criteria. This paper aims to examine the applicability of multiple MCDM techniques, which are used for assessing the priority of road maintenance, by adapting them to this sector. Priority of road maintenance problems subject to internal uncertainty caused by imprecise human judgments will be reviewed and investigated, as well as the most popular theories and methods in group MCDM for presenting uncertain information, creating weights for decision criteria, examining causal relationships, and ranking alternatives. The study concluded that through the strengths and weaknesses reached, fuzzy set theory is the most appropriate and best used in modeling uncertain information. In addition, the methods that are employed the most common in the literature that has been done to explore the correlations between decision criteria have been examined, and it is concluded that the fuzzy best-worst method may be utilized in this research. The Fuzzy VIKOR approach is most likely the best method for ranking the decision alternatives.
Glassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
Eight new complexes with the general formula [M(L)2(H2O)2] were prepared resulting from the reaction of the new Schiff base ligand [(E)-5- ((2-hydroxybenzylidene)amino)-2-phenyl-2,4-dihydro-3H-pyrazol-3- one(L)] with metal ions [manganese, cadmium, zinc, copper, nickel, cobalt, Mercury Bivalent and tetravalent platinum. This ligand was derived from the reaction of the amine (5-amino-2-phenyl-2,4-dihydro3H-pyrazol-3-one) with Salicylaldehyde, which is linked to the metal ions via two atoms. The nitrogen is the isomethene group, and the oxygen is the hydroxide group of the pyrazoline ring. The prepared compounds were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy, and from the
... Show MoreRKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
Anew Schiff base (NaHL) has been prepared from the reaction between the salt of amino acid glycine with 2-hydroxy naphthaldehyde. By tridentate Schiff base of (ONO), donors were characterized by using U.V and spectrophotometer techniques. Complexes of Co(II) Ni(II) Cu(II) and Zn(II) ion with the ligand have been prepared, these complexes were identified by infrared, electronic spectral data, elemental analysis, magnetic moments, and molar conductivity measurements. It is concluded from the elemental analysis that all the complexes have (1:2) [metal:ligand] molar ratios, octahedral, with the exception to Zn(II) complex which have (1:1)[metal:ligand] molar ratio.
... Show MoreNew binuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II) Complexes of N2S2 tetradentate or N4S2 hexadentate symmetric Schiff base were prepared by the condensation of butane-1,4-diylbis(2-amino ethylcarbamodithioate) with 3-acetyl pyridine. The complexes having the general formula [M2LCl4] (where L=butane-1,4-diyl bis (2-(z)-1-(pyridine-3-ylethylidene amino))ethyl carbamodithioate, M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)), were prepared by the reaction of the mentioned metal salts and the ligand. The resulting binuclear complexes were characterized by molar conductance, magnetic susceptibility ,infrared and electronic spectral measurements. This study indicated that Mn(II), Ni(II) and Cu(II) complexes have octahedral g
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show MoreDespite the antiplaque effect of mouth-rinsing with a combination composed of miswak (Salvadora persica L.) and green tea (Camellia sinensis var. assamica) extracts, no data are available regarding its effect on gingival tissue at the molecular level. This pilot study aimed to assess the effect of oral rinsing with this combination on gingival crevicular fluid (GCF) flow and IL-1β levels. Ten subjects rinsed with either the combination, 0.12% chlorhexidine gluconate (CHX) or distilled water without toothbrushing for 4 days after receiving baseline polishing. GCF IL-1β concentration, influx, resting volume and plaque quantity were measured at baseline and after 4 days for each intervention. No significant differences in GCF flow or
... Show MoreSYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS