In recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of accelerated curing is deemed one of methods that achieved high early age strength of concrete and has been grown only gradually. So, the prime aim of this research work is to provide information about the some desired properties of superplasticized and retarding concrete succumbed to accelerated curing methods, such as compressive strength and water absorption and compared it with their corresponding normally curing concrete. Besides, the research discusses the influence of surface texture of aggregate and over-dosing for admixture on performance concrete in such as that conditions. The test results revealed that effect of admixture on properties of concrete are dependent upon it dosage, surface texture for aggregate and
temperature used for curing
In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
The aim of this study is to assess the prevalence of lung infections among a group of hospitalized cancer patients who received chemotherapy as well as to describe a population of these patients. The clinical data and demographic information were collected from the archived files of in-patients referred to hematology center / Baghdad Teaching Hospital / Medical City , ministry of health, Iraq during the period of 2018.
This study was carried out on 250 patients with different types of cancer ,they were mostly of age group (40 - 49) 59 / 250 (23.6)% , (14-19) 49 /250 (19.6%) and (60-69) 41/ 250(16.4%) . The patients had two major types of hematological malignancies
... Show MoreIn this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
Heavy metals are currently of much environmental concern. The contamination by heavy metals in plants and water is one of the major issues to be faced throughout the world. This research is tried to estimate levels of heavy metals in vegetative crops and soil irrigated with well water (as alternative source for irrigation). Samples of well water, soil and vegetative crops were collected from agriculture fields at Al-Dora district in Baghdad. Physico-chemical parameters (pH, EC, TDS and Salinity) were measured for water and (pH, EC and salinity) for soil samples. Estimation of Lead (Pb), Nickle (Ni), Zinc (Zn) and Iron (Fe) concentrations in water, vegetable crops (Raphanus sativus, Apium graveoleus, Beta vulgaris, Allium ampeloprasum, Le
... Show MoreIn order to understand the effect of the number of piles (N), the history response of dynamic pile load in piled raft system and deflection time history of piled raft under repeated impact load applied on the center of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The results of experimental work are found to be dynamic load increase with increase height of drop, the measured repeated dynamic load time history on the center of piled raft was close approximately to three a half sine wave shape with small duration in about (0.015 Sec). The maximum peak of impact loads occurs in pile and deflection time history occur after at the time of the peak repeated impact loads, dynamic pile load
... Show MoreAn experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum
... Show MoreDurability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marsh
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show More