This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable closed-loop performance, while the H∞ controller guarantees robust stability for the closed-loop system. The validation of the techniques is demonstrated through the robust and performance gamma index, where the H∞ controller achieved a robust gamma index of 0.8591, indicating good robustness and the H2 controller achieved a performance gamma index of 2.1972, indicating a desirable performance. The robust control toolbox of MATLAB is used for simulation purposes. Overall, the paper shows that selecting a suitable, robust control strategy is crucial for designing effective control systems, and the H2 and H∞ robust control approaches are viable options for achieving this goal.
In this article, a new deterministic primality test for Mersenne primes is presented. It also includes a comparative study between well-known primality tests in order to identify the best test. Moreover, new modifications are suggested in order to eliminate pseudoprimes. The study covers random primes such as Mersenne primes and Proth primes. Finally, these tests are arranged from the best to the worst according to strength, speed, and effectiveness based on the results obtained through programs prepared and operated by Mathematica, and the results are presented through tables and graphs.
High performance work systems and general industrial enterprise performance
Wireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreThe research tagged (functional enhancement and its reflection on industrial product systems) focused on the possibility of enhancing industrial products in terms of form and functionality in a way that they are able to meet the needs of the user through the impact of technology and modern technologies on the functional enhancement of industrial products and their effectiveness in achieving formal and functional design variables, and producing products Industrial products are highly efficient and durable in order to improve them in order to meet the needs of the user, the transfer of technology between life forms and industrial products is desirable because the functional enhancement processes that occurred in general on industrial produ
... Show MoreRecent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
In this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreAge, hypertension, and diabetes can cause significant alterations in arterial structure and function, including changes in lumen diameter (LD), intimal-medial thickness (IMT), flow velocities, and arterial compliance. These are also considered risk markers of atherosclerosis and cerebrovascular disease. A difference between right and left carotid artery blood flow and IMT has been reported by some researchers, and a difference in the incidence of nonlacunar stroke has been reported between the right and left brain hemispheres. The aim of this study was to determine whether there are differences between the right and left common carotid arteries and internal carotid arteries in patient
Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show More