Recently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 38.5%, respectively. Also, with 10% of SW, the values of swelling percent (SP) and swelling pressure (SPR) decreased by 34% and 33%. On the other hand, SW content increase led to the rise in unconfined compressive strength (UCS) of the soil tested from 511kPa to 726kPa with the addition of 10% SW. Based on the findings, it can be confirmed that 10% SW in its natural state is notable for improving fine-grained soil strength and reducing the environmental hazard related to this waste type.
This investigation was carried out to examine the effect of replacing partial of flour by dried Lentils (Lens culinaris) to white flour in different percentages on the chemical, sensory and storage properties of the Laboratory bread. The results revealed that replacing 0% than wheat flour by lentil powder (1) control was high significan than the replacing 25 and 35% than wheat flour by lentil powder ( 4 and 5) in flavor and chewiness . The results of sensory evaluation showed that replacing 4 were high significan different than that of replacing 1 in external layer colour. Other replacing percentages, however, did not show significant differences of in comparison with control . In regards with chemical analysis of Iron and copper, i
... Show MoreThe present study was performed to spotlight the potential role of soil bacteria in the Al-Rumaila oil field as a bioindicator of heavy metals pollution. For this purpose, nine soil samples were collected from different sites, with 20cm depth, to assess the pollution status depending on the total and available concentrations of heavy metals. The result indicates pollution of the studied soils with the following metals: Cd, Cu, Fe, Zn, and Pb. The mean of total concentration for all studied metals was higher than the allowed maximum limit based on the international limit:(3.394, 3.994, 39.993, 8844.979,150.372, and 103.347 µg/g), respectively. While measuring the total Metal concentration is important in determining the de
... Show MoreThis work investigates the effect of earthquakes on the stability of a collective pile subjected to seismic loads in the soil layer. Plaxis 3D 2020 finite element software modeled pile behavior in dry soils with sloping layers. The results showed a remarkable fluctuation between the earthquakes, where the three earthquakes (Halabja, El Centro, and Kobe) and the acceleration peak in the Kobe earthquake had a time of about 11 seconds. Different settlement results were shown, as different values were recorded for the three types of earthquakes. Settlement ratios were increased by increasing the seismic intensity; hence the maximum settlement was observed with the model under the effect of the Kobe earthquake (0.58 g), where
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreCdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreThin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show More