Recently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 38.5%, respectively. Also, with 10% of SW, the values of swelling percent (SP) and swelling pressure (SPR) decreased by 34% and 33%. On the other hand, SW content increase led to the rise in unconfined compressive strength (UCS) of the soil tested from 511kPa to 726kPa with the addition of 10% SW. Based on the findings, it can be confirmed that 10% SW in its natural state is notable for improving fine-grained soil strength and reducing the environmental hazard related to this waste type.
This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be
... Show MoreThe objective of this study is to investigate the application of advanced oxidation processes (AOPs) in the treatment of wastewater contaminated with furfural. The AOPs investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The experiments were conducted by using cylindrical stainless steel batch photo-reactor. The influence of different variables: initial concentration of H2O2 (300-1300mg/L), Fe+2(20-70mg/L), pH(2-7) and initial concentration of furfural (50-300 mg/L) and their relationship with the mineralization efficiency were studied.
Complete mineralization for the system UV/H2O2/Fe+2 was achieved at: initi
... Show MoreWhen laser light incident on biological tissue, it is either reflected from the
surface of the tissue (e.g. the skin) or scattered inside the tissue or absorbed .The laser light will be
absorbed by water, hemoglobin and melanin. Absorption is also highly dependent on wave-length of
laser radiation. The absorbed light is converted into kinetic energy leading to laser effect that when
appropriately applied can produce reaction ranging from incision, vaporization to coagulation. Aim of
the study: To evaluate the efficiency of diode Laser 810 ± 20nm in treatment of oral lesions. Methods:
6 patients (2 females and 4 males) with different oral lesions were treated in the hospital of specialized
surgeries by the use of dio
The effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: comp
The aim of this study is to investigate the ability of malachite green (MG) combined with 650nm diode laser to kill Candida albicans and to spectrally study the MG photodegradation after photodynamic therapy (PDT) spectrally. Cultures of Candida albicans were exposed to 40mW, 650 nm diode laser in the absence of MG. In PDT group, the MG was added to the Candida suspension for 5 min then exposed to diode laser for (5, 10, 15, 20) min at power density of 0.59W/cm2. The absorption spectrum of the photosensitized fungal suspension was obtained. The data were submitted to T-test (p<0.05). A 650nm diode laser in the presence of MG reduced the number of CFU/ml in 98.4%. Laser with 650nm alone and MG alone did not reduce significantly the num
... Show MoreAdsorption experiments were carried out using two different low-cost sorbent materials, date seeds and olive seeds. These sorbents used as a single phase (not as mixture) to remove cadmium ions from simulated wastewater by adsorption process. The equilibrium time was found at 2 hr. The experiments include different parameters such sorbent type and weight and contact time. It was found that both of olive seed and date seed have approximately the same adsorption capacity (qm) with 15.644 mg/g and 15.2112 mg/g, respectively. Equilibrium isotherms and kinetic studies have been carried out. Langmuir isotherm model better fits the experimental data compared with the Freundlich isotherm for olive seed, while Freundlich isotherm fits for date se
... Show MoreAbstract
The current study was carried out to reveal the plasma parameters such as ,the electron temperature ( ), electron density (ne) , plasma frequency (fp), Debye length ( ) , Debye number ( for CdS to employ the LIBS for the purpose of analyzing and determining spectral emission lines using . The results of electron temperature for CdS range (0.746-0.856) eV , the electron density(3.909-4.691)×1018 cm-3. Finally ,we discuss plasma parameters of CdS through nano second laser generated plasma .