Recently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 38.5%, respectively. Also, with 10% of SW, the values of swelling percent (SP) and swelling pressure (SPR) decreased by 34% and 33%. On the other hand, SW content increase led to the rise in unconfined compressive strength (UCS) of the soil tested from 511kPa to 726kPa with the addition of 10% SW. Based on the findings, it can be confirmed that 10% SW in its natural state is notable for improving fine-grained soil strength and reducing the environmental hazard related to this waste type.
In this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,
In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO
... Show MoreSurface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show MoreTitanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreThe fluorescence emission of Rhodamine 6G (R6G) and Acriflavine dyes in PMMA polymer have been studied by changing the irradiation and exposure time of laser light to know the effect of this parameter. It was found that the fluorescence intensity decreases in the polymer samples doped dyes as the exposure time increases and then reaches stabilization at long times, this behavior called photobleaching, which have been shown in liquid phase less than solid phase. Using 2nd harmonic with wavelength 530 nm laser, the photobleaching effect in the two dye-doped polymers different solvent but same was studied. It was observed that photobleaching of by different solution and by using dip spin coating the photobleaching seem in liquid phase more
... Show MoreThe fluorescence emission of Rhodamine 6G (R6G) and Acriflavine dyes in PMMA polymer have been studied by changing the irradiation and exposure time of laser light to know the effect of this parameter. It was found that the fluorescence intensity decreases in the polymer samples doped dyes as the exposure time increases and then reaches stabilization at long times, this behavior called photobleaching, which have been shown in liquid phase less than solid phase. Using 2nd harmonic with wavelength 530 nm laser, the photobleaching effect in the two dye-doped polymers different solvent but same was studied. It was observed that photobleaching of by different solution and by using dip spin coating the photobleaching seem in liquid phase
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
In this study, concentrations of radon and uranium were measured for twenty six samples of soil. The radon concentrations in soil samples measured by registrant alpha-emitting radon (222Rn) by using CR-39 track detector. The uranium concentrations in soil samples measured by using registrar fission fragments tracks in CR-39 track detector that caused by the bombardment of U with thermal neutrons from 241 Am-Be neutron source that has flux of 5 ×103n cm-2 s-1.
The concentrations values were calculated by a comparison with standard samples The results show that the radon concentrations are between (91.931-30.645Bq/m3).
The results show that also the uranium concentrat
The research targets study of influence of additives on sand mold’s properties and, consequently, on
that of carbon steel CK45 casts produced by three molds. Three materials were selected for addition
to sand mix at weight percentages. These are sodium carbonates, glycerin and oat flour. Sand molds
of studied properties were produced to get casts from such molds. The required tests were made to
find the best additives with respect to properties of cast. ANSYS software is used to demonstrate
the stresses distribution of each produced materials. It is shown that the mechanical properties of
casts produced is improved highly with sodium carbonates and is less with oat flour and it is seem a
few with glycerin additives
The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show More