The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed, laser power, laser frequency and number of passes on the cutting characteristics -and geometrical. Cutting-geometry requirements are significant quality features since they are one of the metrics for the geometrical precision of micro-cutting proses it was concluded that higher laser power, slower speed, and more pass number result in a low kerf taper, these parameters have a significant impact on the other cutting characteristics, and geometrical. Whereas the frequency has the lowers impact on the cutting geometrical. Finally, the experiments show Maximum depth was 2000, width minimum top kerf width was 305.56 µm and the minimum angle of 2.8906.
The aim of this work was to prepare zeolite type 13X from locally available kaolin and to study the effects of using some binding materials through the process of agglomeration of this zeolite. This study was focused on using kaolin binder in different weight percents (10,15,25,35 and 45%).Physical and mechanical properties of the agglomerates such as porosity , apparent density , pore volume, crushing strength , loss on attrition , surface area and finally the adsorption capacity had been measured and evaluated .The preparation step was achieved by mixing the reactants consisting of metakaolin , source of silica as ( sodium trisilicate ) and sodium hydroxide . The conditions was temperature of 70° C and time of mixing as 8, 10,24,34,50
... Show MoreFiber optics technology has shown immense applications in the areas of medicine, telecommunication, and imaging. For these particular applications, it requires fibers with precise cleaving. In this paper, we will demonstrate a quick, simple and efficient cleaving method that can result in a high-quality fiber surface that works well for many fiber-optic applications. The smooth tip and good surface quality obtained on the cleaved surface of optical fiber is demonstrated by using a microscope imaging system and was flat surface with a 900 angle for perpendicular cleavages. The precision cleaver provides smooth and high-quality cleaves on single-fiber surfaces as opposed to the ruby scribe pen. The defects that may occur during the cleaving p
... Show Moreِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.
This paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced syste
Molecularly imprinted polymers (MIPs) are an effective method for separating enantiomeric compounds. The main objective of this research is to synthesize D-arabinitol MIPs, which can selectively separate D-arabinitol and its potential application to differentiate it from its enantiomer compound through a non-covalent approach. A macroporous polymer was synthesized using D-arabinitol as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylate (EGDMA) being a cross-linker, dimethylsulfoxide (DMSO) being a porogen, as well as benzoyl peroxide being an initiator. After polymer synthesis, D-arabinitol was removed by a mixture of methanol and acetic acid (4:1, v/v). Fourier-Transform Infrared spectroscopy (FT-IR) and Scan
... Show MoreAluminum Metal Matrix Composites (ALMMCs) was prepared by using stir casting technique for AA 7075 aluminum alloy as a matrix reinforced with SiC particles at various percentages (3, 6, 9 and 12 wt. % ) and 75µm in grain size. The prepared composite material can be used for many applications such as aerospace, automobiles and many industrial sectors. Abrasive wear test was carried out by two stages: the first stage was done by changing the emery papers at various grit sizes 180, 320, 500, and 1000µm with constant applied load 15N. While the second stage was carried out by changing the applied loads 5, 10, 15, 20 and 25N with constant emery paper at 320 µm grit size. Microstructure examination, hardness test and roughn
... Show MoreMetal corrosion is a destructive process for many industrial operations, including oil well acidizing and acid pickling. Therefore, numerous efforts made by many researchers to control the steel corrosion. In the present work, A (E)-4-(((4-(5-mercapto-1,3,4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol (MOPM) has been synthesized and characterized as a new corrosion inhibitor for mild steel in 0.1 M hydrochloric acid. FTIR and 1 HNMR were used in the diagnosis of MOPM, while electrochemical polarization technique was employed to test the performance of inhibitor at various temperatures and inhibitor concentrations. Electrochemical studies showed that MOPM acts as a mixed-type inhibitor with a maximum inhibition efficiency of
... Show MoreThis study describes preparation a new series of tetra-dentate N2O2 dinuclear complexes Cr(III), Co(II)and Cu(II) of the Schiff base 2-[5-(2-hydroxy-phenyl)-1,3,4-thiadiazol-2-ylimino]-methyl-naphthalen-1-ol], (LH2) derived from 1-hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. These ligands were characterized by FT-IR, UV-Vis, Mass spectra, elemental analysis, and 1H-NMR. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, thermal Analysis (TGA), and metal analysis by atomic absorption. The stoichiometry of metal to ligand, magnetic susceptibility, and electronic spectra measurements show an octahedral geom
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL