Ensuring reliable data transmission in Network on Chip (NoC) is one of the most challenging tasks, especially in noisy environments. As crosstalk, interference, and radiation were increased with manufacturers' increasing tendency to reduce the area, increase the frequencies, and reduce the voltages. So many Error Control Codes (ECC) were proposed with different error detection and correction capacities and various degrees of complexity. Code with Crosstalk Avoidance and Error Correction (CCAEC) for network-on-chip interconnects uses simple parity check bits as the main technique to get high error correction capacity. Per this work, this coding scheme corrects up to 12 random errors, representing a high correction capacity compared with many other code schemes. This candidate has high correction capability but with a high codeword size. In this work, the CCAEC code is compared to another well-known code scheme called Horizontal-Vertical-Diagonal (HVD) error detecting and correcting code through reliability analysis by deriving a new accurate mathematical model for the probability of residual error Pres for both code schemes and confirming it by simulation results for both schemes. The results showed that the HVD code could correct all single, double, and triple errors and failed to correct only 3.3 % of states of quadric errors. In comparison, the CCAEC code can correct a single error and fails in 1.5%, 7.2%, and 16.4% cases of double, triple, and quadric errors, respectively. As a result, the HVD has better reliability than CCAEC and has lower overhead; making it a promising coding scheme to handle the reliability issues for NoC.
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreThe research aims to measure the sustainability of the Iraqi economy for the period 1990-2018 as well as to show the impact of fluctuations in the level of GDP on financial sustainability, where financial sustainability is the necessary and sufficient condition for achieving economic and financial balance in the country, as financial sustainability reflects the movement of the state budget and its relationship to GDP through the indicators of deficit, fiscal surplus and public debt internal and external, as well as reflecting the art of managing public debt, and the more managed public debt is achieved, the more the management of public debt is achieved financial sustainability. for the state in the sense that there is a reciprocal
... Show MoreMetoclopramide (MCP) ion selective electrodes based on metoclopramide-phosphotungstic acid (MCP-PT) ion pair complex in PVC matrix membrane were constructed. The plasticizers used were tri-butyl phosphate (TBP), di-octyl phenyl phosphonate (DOPP), di-butyl phthalate (DBPH), di-octyl phthalate (DOP), di-butyl phosphate (DBP), bis 2-ethyl hexyl phosphate (BEHP). The sensors based on TBP, DOPP, DBPH and DOP display a fast, stable and linear response with slopes 59.9, 57.7, 57.4, 55.3 mV/decade respectively at pH ranged 2-6. The linear concentration range between 1.0×10-5 – 1.0×10-2 M with detection limit 3.0×10-6 and 4.0×10-6 M for electrodes using TBP, DOPP and DBPH while e
... Show MoreThe textbook is the primary means of creativity and thinking, which has a major role in the development of the readership and mental abilities of the student. It is the basic tool in education in Iraq for the teacher and the student, which cannot be dispensed in any educational program. The current study aimed at the book of the biology of the sixth grade of science in Iraq (comparative study). It was compared to the book of biology for the twelve grade in the Kingdom of Jordan to identify the ratio of similarity and differences between them, in addition, to identify the weaknesses in the Iraq curriculum and developing appropriate solutions and suggestions to address them. The sample was represented with books of biology (six-science cla
... Show MoreIn the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show More