Ensuring reliable data transmission in Network on Chip (NoC) is one of the most challenging tasks, especially in noisy environments. As crosstalk, interference, and radiation were increased with manufacturers' increasing tendency to reduce the area, increase the frequencies, and reduce the voltages. So many Error Control Codes (ECC) were proposed with different error detection and correction capacities and various degrees of complexity. Code with Crosstalk Avoidance and Error Correction (CCAEC) for network-on-chip interconnects uses simple parity check bits as the main technique to get high error correction capacity. Per this work, this coding scheme corrects up to 12 random errors, representing a high correction capacity compared with many other code schemes. This candidate has high correction capability but with a high codeword size. In this work, the CCAEC code is compared to another well-known code scheme called Horizontal-Vertical-Diagonal (HVD) error detecting and correcting code through reliability analysis by deriving a new accurate mathematical model for the probability of residual error Pres for both code schemes and confirming it by simulation results for both schemes. The results showed that the HVD code could correct all single, double, and triple errors and failed to correct only 3.3 % of states of quadric errors. In comparison, the CCAEC code can correct a single error and fails in 1.5%, 7.2%, and 16.4% cases of double, triple, and quadric errors, respectively. As a result, the HVD has better reliability than CCAEC and has lower overhead; making it a promising coding scheme to handle the reliability issues for NoC.
Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreIn the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h
... Show MoreExtracting, studying and interpreting the morphological database of a basin is a basic building block for building a correct geomorphological understanding of this basin. In this work, Arc GIS 10.8 software and SRTM DEM satellite images were used. The principle of data integration was adopted by extracting the quantitative values of the morphometric characteristics that are affected by the geomorphological condition of the studied basin, then eliciting an optimal conception of the geomorphological condition of the basin from the meanings and connotations of these combined transactions. Hypsometric integration was extracted for each region in the basin separately with the value of integration of the plot curve for the relative heights of
... Show MoreThe Ozone Monitoring Instrument (OMI) measures the reflected solar radiation in the ultraviolet and visible part in the spectral range that is between 270 and 500 nm, using two channels with a spectral resolution of about 0.5 nm. Ground-level tropospheric ozone is one of the air pollutants of most concern. In the troposphere, near the Earth's surface, human activities lead to ozone concentrations several times higher than the natural background level. To evaluate the ozone distribution over Iraq, the ozone data from OMI were analyzed using geostatistical techniques. Theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) wer
... Show MoreThe problem of steady, laminar, natural convective flow in an square enclosure with and without partitions is considered for Rayleigh number (103-106) and Prandtl number (0.7). Vertical walls were maintained isothermal at different temperatures while horizontal walls and the partitions were insulated. The length of partition was taken constant. The number of partitions were placed on horizontal surface in staggered arrangement from (1– 3) and ratio of partition thickness (H/L= 0.033, 0.083, 0.124). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on a program in Fortran 90 with the finite difference method is obtained. Representative results illustrating the effects of the thickn
... Show MorePurpose: This study aimed to compare the stability and marginal bone loss of implants inserted with flapped and flapless approaches 8 weeks after surgery and 3 months after loading. Material and Methods: Thirty SLActive implants were inserted in 11 patients and early loaded with final restoration 8 weeks after healing period. The stability values determined by Osstell and the marginal bone loss measured by CBCT at the initial time (1st) and 8 weeks of the healing period (2nd) and 3 months after loading (3rd). Results: The overall survival rate was 100%. A significant increase in the 3rd implant stability value in the age of ˂ 40. A significant decrease in the 2nd implant stability value in both gender and traumatic zone with a flapless app
... Show More
The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla
... Show MoreAbstract Diabetic nephropathy (DN) is a prevalent chronic microvascular diabetic complication. As inflammation plays a vital role in the development and progress of DN the macrophages migration inhibitory factor (MIF), a proinflammatory multifunctional cytokine approved to play a critical function in inflammatory responses in various pathologic situations like DN. This study aimed To assess serum levels of MIF in a sample of Iraqi diabetic patients with nephropathy supporting its validity as a marker for predicting nephropathy in T2DM patients. In addition, to evaluate the nephroprotective effect of angiotensin-converting enzyme (ACE) inhibitors in terms of their influence on MIF levels. This is a case-control study involving ninety
... Show More