This paper aims to improve the voltage profile using the Static Synchronous Compensator (STATCOM) in the power system in the Kurdistan Region for all weak buses. Power System Simulation studied it for Engineers (PSS\E) software version 33.0 to apply the Newton-Raphson (NR) method. All bus voltages were recorded and compared with the Kurdistan region grid index (0.95≤V ≤1.05), simulating the power system and finding the optimal size and suitable location of Static Synchronous Compensator (STATCOM)for bus voltage improvement at the weakest buses. It shows that Soran and New Koya substations are the best placement for adding STATCOM with the sizes 20 MVAR and 40 MVAR. After adding STATCOM with the sizes [20MVAR and 40MVAR] at Soran to the test, it is seen that the total average change in voltage profile for the system improved results in about 17.34 % in average per unit change for the 28 weakest buses, which provides a good improvement in stability. Also, the system’s total active power loss reduced from 123.8 MW without STATCOM to 102.8 MW with STATCOM. The results are encouraging for applying the approach to the power system. This approach stands out due to all bus voltages are within acceptable ranges.
In this work various correlation methods were employed to investigate the annual cross-correlation patterns among three different ionospheric parameters: Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). The annual predicted dataset for these parameters were generated using VOCAP and ASASPS models based on the monthly Sunspot Numbers (SSN) during two years of solar cycle 24, minimum 2009 and maximum 2014. The investigation was conducted for Thirty-two different transmitter/receiver stations distributed over Middle East. The locations were selected based on the geodesic parameters which were calculated for different path lengths (500, 1000, 1500, and 2000) km and bearings (N, NE, E, S
... Show MoreRadiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show MoreThe adsorption of Ru and Ce were carried out using manganese dioxide as adsorbent. The Optimization of the adsorption conditions were studied as a function of shaking time, nitric acid, metal ions, concentrations and temperature effects. A rapid initial adsorption on MnO2 is followed by a steady and slow increase of metal uptake. The equilibration time is reached after four hours shaking for Ru and Ce and the adsorption is much better from one molar acidic solution and 90°C.
The proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A
... Show MoreIn this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.
A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.