Preferred Language
Articles
/
joe-1829
FACE IDENTIFICATION USING BACK-PROPAGATION ADAPTIVE MULTIWAVENET
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a recognition rate of 97.75% in the presence of facial expression, lighting and pose variations. Results are compared with its wavelet-based counterpart where it obtained a recognition rate of 10.4%. The proposed multiwavenet demonstrated very good recognition rate in the presence of variations in facial expression, lighting and pose and outperformed its wavelet-based counterpart.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Evaluation Method of Mesh Protocol over ESP32 and ESP8266
...Show More Authors

Internet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 01 2017
Journal Name
International Research Journal Of Engineering And Technology
A POWERFUL AUTOMATED IMAGE INDEXING AND RETRIEVAL TOOL FOR SOCIAL MEDIA Sample
...Show More Authors

The Internet image retrieval is an interesting task that needs efforts from image processing and relationship structure analysis. In this paper, has been proposed compressed method when you need to send more than a photo via the internet based on image retrieval. First, face detection is implemented based on local binary patterns. The background is notice based on matching global self-similarities and compared it with the rest of the image backgrounds. The propose algorithm are link the gap between the present image indexing technology, developed in the pixel domain, and the fact that an increasing number of images stored on the computer are previously compressed by JPEG at the source. The similar images are found and send a few images inst

... Show More
Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Facial Emotion Images Recognition Based On Binarized Genetic Algorithm-Random Forest
...Show More Authors

Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Global Pharma Technology
Influence of immune engines in iraqi patients with acute myeloid leukemia
...Show More Authors

Acute myeloid leukemia (AML) is heterogeneous disorders originated from the abnormalities in the proliferation and maturation of myeloid progenitors in bone morrow. There is a clinical correlation between immunity engines and disease progression, but this relationship is not completely clear yet. This study was designed to assess the full immune response in Iraqi patients diagnosed with AML. Patients and healthy volunteers were divided into three groups: newly diagnosed untreated, under chemotherapy treatment patients and control group. A significant reduction were seen in C4 and IFN-γ levels in both untreated and treated groups with no significant difference between untreated and treated groups. On the other hand, IL-2 and IL-8 levels inc

... Show More
Scopus
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
The Suggested Reciprocal Relationship between Maximum, Minimum and Optimum Usable Frequency Parameters Over Iraqi Zone
...Show More Authors

In this work, the relationship between the ionospheric parameters (Maximum Usable Frequency (MUF), Lowest Usable Frequency (LUF) and Optimum working Frequency (OWF)) has been studied for the ionosphere layer over the Iraqi zone. The capital Baghdad (44.42oE, 33.32oN) has been selected to represent the transmitter station and many other cities that spread over Iraqi region have represented as receiver stations. The REC533 communication model considered as one of the modern radio broadcasting version of ITU has been used to calculate the LUF parameter, while the MUF and OWF ionospheric parameters have been generated using ASAPS international communication model which represents one of the most advanced  and

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
استعمال انحدار الاسقاطات المتلاحقة و الشبكات العصبية في تجاوز مشكلة البعدية
...Show More Authors

المستخلص يهدف هذا البحث الى تجاوز مشكلة البعدية من خلال طرائق الانحدار اللامعلمي والتي تعمل على تقليل جذر متوسط الخطأ التربيعي (RMSE) , أذ تم  استعمال طريقة انحدار الاسقاطات المتلاحقة  (PPR)    ,والتي تعتبر احدى طرائق اختزال الابعاد التي تعمل على تجاوز مشكلة البعدية (curse of dimensionality) , وان طريقة (PPR) من التقنيات الاحصائية التي تهتم بأيجاد الاسقاطات الاكثر أهمية في البيانات المتعددة الابعاد , ومع ايجاد كل اسقاط

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Geological Journal
Development of 1D-Synthetic Geomechanical Well Logs for Applications Related to Reservoir Geomechanics in Buzurgan Oil Field
...Show More Authors

Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani

... Show More
Crossref (1)
Crossref
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Comparison between Multi-Layer Perceptron and Radial Basis Function Networks in Detecting Humans Based on Object Shape
...Show More Authors

       Human detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two ty

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF