Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a recognition rate of 97.75% in the presence of facial expression, lighting and pose variations. Results are compared with its wavelet-based counterpart where it obtained a recognition rate of 10.4%. The proposed multiwavenet demonstrated very good recognition rate in the presence of variations in facial expression, lighting and pose and outperformed its wavelet-based counterpart.
The research aims to identify the extent to which Iraqi private banks practice profit management motivated by reducing the taxable base by increasing the provision for loan losses by relying on the LLP it model, which consists of a main independent variable (net profit before tax) and independent sub-variables (bank size, total debts to total equity, loans granted to total obligations) under the name of the variables governing the banking business. (Colmgrove-Smirnov) was used to test the normal distribution of data for all banks during the period 2017-2020, and then find the correlation between the main independent variable sub and the dependent variable by means of the correlation coefficient person, and then using the multiple
... Show MoreThe ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
This research work aims to the determination of molybdenum (VI) ion via the formation of peroxy molybdenum compounds which has red-brown colour with absorbance wave length at 455nm for the system of ammonia solution-hydrogen peroxide-molybdenum (VI) using a completely newly developed microphotometer based on the ON-Line measurement. Variation of responses expressed in millivolt. A correlation coefficient of 0.9925 for the range of 2.5-150 ?g.ml-1 with percentage linearity of 98.50%. A detection limit of 0.25 ?g.ml-1 was obtained. All physical and chemical variable were optimized interferences of cation and anion were studied classical method of measurement were done and compared well with newly on-line measurements. Application for the use
... Show MoreThis work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
The research abstract included introduction and the importance of the research, also included display of the problem represented by weakness for the players when performing some of the basic skills in badminton and the shuttle not reaching to the back corners of the court which gives the player the opportunity to win through applying the pressure on the opponent and make him away from the control center(T) which definitely required level of a collection muscular strength contributed in performance perhaps this related to a number of reasons related with weakness in physical changes especially explosive and characterized by speed forces for the badminton players and be acquainted with them and knowing the extent of their effect in performanc
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. This work modernize the feedforward neural network, so the secret message will be encrypted by unsupervised neural network method to get the cipher text that can be decrypted using the same network to get the original text. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In this work, the key is the final weights
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreHemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst