Drought is a natural phenomenon in many arid, semi-arid, or wet regions. This showed that no region worldwide is excluded from the occurrence of drought. Extreme droughts were caused by global weather warming and climate change. Therefore, it is essential to review the studies conducted on drought to use the recommendations made by the researchers on drought. The drought was classified into meteorological, agricultural, hydrological, and economic-social. In addition, researchers described the severity of the drought by using various indices which required different input data. The indices used by various researchers were the Joint Deficit Index (JDI), Effective Drought Index (EDI), Streamflow Drought Index (SDI), Standard Precipitation Index (SPI), Standard Evapotranspiration Index (SPEI), and Palmer Index (PI). According to the researchers in hydrology and for the most accurate description of the drought, more than one indicator for drought should be used. Most reviewed studies recommended using the Standard Precipitation Index (SPI) as the best indicator to describe the drought.
Everybody is connected with social media like (Facebook, Twitter, LinkedIn, Instagram…etc.) that generate a large quantity of data and which traditional applications are inadequate to process. Social media are regarded as an important platform for sharing information, opinion, and knowledge of many subscribers. These basic media attribute Big data also to many issues, such as data collection, storage, moving, updating, reviewing, posting, scanning, visualization, Data protection, etc. To deal with all these problems, this is a need for an adequate system that not just prepares the details, but also provides meaningful analysis to take advantage of the difficult situations, relevant to business, proper decision, Health, social media, sc
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreIt is not often easy to identify a certain group of words as a lexical bundle, since the same set of words can be, in different situations, recognized as idiom, a collocation, a lexical phrase or a lexical bundle. That is, there are many cases where the overlap among the four types is plausible. Thus, it is important to extract the most identifiable and distinguishable characteristics with which a certain group of words, under certain conditions, can be recognized as a lexical bundle, and this is the task of this paper.
Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreThe study aims to select suitable ornamental plant species that can survive relatively with high concentrations of acetaminophen and methylparaben in constructed wetlands. Alternanthera spp, Asparagus aethiopicus and Chlorophytum comosum are examined to withstand three initial concentrations, 20, 100 and 200 mg/L of acetaminophen and methylparaben. A total of 21 plastic pails with each 3 L capacity consisting of nine pails are used for each pharmaceutical and personal care products (PPCPs) compounds (acetaminophen and methylparaben) for three ornamental plants (Alternanthera spp, Asparagus aethiopicus and Chlorophytum comosum), with three pails as plant controls. The results reveales
... Show MoreBackground: Toxin-producing Shiga Escherichia coli has been identified as a new foodborne pathogen that poses a significant health risk to humans. Shiga toxin-producing Escherichia coli can be found in raw cow milk and its derivatives. A small number of Escherichia coli strains that produce shiga toxin are pathogenic. Aim of study: The study aimed to see if there were any virulence genes in 50 milk samples that were typical of Entero-haemorrhagic E. coli and evaluate the Myrtus communis effects on these bacteria. Materials and Method: Milk samples were used to isolate E. coli bacteria (n= 27), biochemically analyzed, and genetically screened for virulence genes using a multiplex (PCR). The hydro-alcoholic extraction of Myrtus communis leave
... Show MoreIn Baghdad city, Iraq, the traffic volumes have rapidly grown during the last 15 years. Road networks need to reevaluate and decide if they are operating properly or not regarding the increase in the number of vehicles. Al-Jadriyah intersection (a four-leg signalized intersection) and Kamal Junblat Square (a multi-lane roundabout), which are two important intersections in Baghdad city with high traffic volumes, were selected to be reevaluated by the SIDRA package in this research. Traffic volume and vehicle movement data were abstracted from videotapes by the Smart Traffic Analyzer (STA) Software. The performance measures include delay and LOS. The analysis results by SIDRA Intersection 8.0.1 show that the performance of the roundab
... Show More