The OpenStreetMap (OSM) project aims to establish a free geospatial database for the entire world which is editable by international volunteers. The OSM database contains a wide range of different types of geographical data and characteristics, including highways, buildings, and land use regions. The varying scientific backgrounds of the volunteers can affect the quality of the spatial data that is produced and shared on the internet as an OSM dataset. This study aims to compare the completeness and attribute accuracy of the OSM road networks with the data supplied by a digitizing process for areas in the Baghdad and Thi-Qar governorates. The analyses are primarily based on calculating the portion of the commission (extra road) and omission (missing road) for OSM roads. The calculations also involved measuring the classifications and the attribute correctness associated with geometrical shapes. The results indicated that the completion rates were very high in the two study areas, and the percentages of labels or names were low in the two study areas. However, it was better on the main roads than in other road classes.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreCoaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi
... Show More